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Totally Real Minimal Submanifolds in a Quaternion Projective Space
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Abstract: In this paper, we prove some pinching theorems with respect to the scalar
curvatures of 4-dimensional projectively flat (conharmonically flat) totally real minimal sub-
manifolds in a 16-dimensional quaternion projective space.
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1. Introduction. A quaternion Kaehler man-
ifold is defined as a 4n-dimensional Riemannian
manifold whose holonomy group is a subgroup of
Sp(1)" Sp(n). A quaternion projective space
Qpn(c) is a quaternion Kaehler manifold with
constant quaternion sectional curvature c > 0.

Let M be an n-dimensional Riemannian man-
ifold and J :M--* Qpn(c) an isometric immersion
of M into QPn(c). If each tangent 2-subspace of
M is mapped by J into a totally real plane of
QPn(c), then M is called a totally real subman-
ifold of QPn(c). Funabashi [3], Chen and Houh
[1] and Shen [6] studied this submanifold and got
some curvature pinching theorems. The purpose
of this paper is to give some characterizations of
4-dimensional projectively flat (conharmonically
flat) totally real minimal sub-manifolds in
Qp4 (c).

2. Preliminaries. Let QP(c) denote a 4n-
dimensional quaternion projective space with
constant quaternion see.tional curvature c > 0
and M be a totally real minimal submanifold in
QP(c) of dimension n. In this paper we will use
the same notations and terminologies as in [1]. It
was proved in [1] that the second fundamental
form of the immersion satisfies
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this together with the equation of Gauss, implies
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Similarly, we have
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Combining (2.1)with (2.2), (2.3)and
n(n- 1) p, we obtain
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3. Projectively flat totally real minimal sub-

manifold. Suppose M is an n-dimensional com-
pact oriented totally real minimal submanifold in
QPn(c), if M is projectively flat, then its projec-
tive curvature tensor pE2 satisfies

(3.1) P(X, Y, Z, W) de____. R(X, Y, Z, W)
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0, where R, S, g are the curvature tensor,
Ricci tensor and Riemannian metric of M respec-
tively. From (3.1) we have
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which, together with (2.4) asserts
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Taking the integrals of the both sides of (3.3)
and using Green’s theorem, we have
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On the other hand, by the Gauss-Bonnet
theorem, when n 4, the Euler number Z (M) of


