Totally Real Minimal Submanifolds in a Quaternion Projective Space

By LIU Ximin
Department of Mathematics, Nankai University, China
(Communicated by Heisuke Hironaka, M. J. A., Dec. 12, 1996)

Abstract

In this paper, we prove some pinching theorems with respect to the scalar curvatures of 4 -dimensional projectively flat (conharmonically flat) totally real minimal submanifolds in a 16 -dimensional quaternion projective space.

Keywords: Totally real submanifold, Quaternion projective space, Curvature pinching

1. Introduction. A quaternion Kaehler manifold is defined as a $4 n$-dimensional Riemannian manifold whose holonomy group is a subgroup of $S p(1) \cdot S p(n)$. A quaternion projective space $Q P^{n}(c)$ is a quaternion Kaehler manifold with constant quaternion sectional curvature $c>0$.

Let M be an n-dimensional Riemannian manifold and $J: M \rightarrow Q P^{n}(c)$ an isometric immersion of M into $Q P^{n}(c)$. If each tangent 2-subspace of M is mapped by J into a totally real plane of $Q P^{n}(c)$, then M is called a totally real submanifold of $Q P^{n}(c)$. Funabashi [3], Chen and Houh [1] and Shen [6] studied this submanifold and got some curvature pinching theorems. The purpose of this paper is to give some characterizations of 4 -dimensional projectively flat (conharmonically flat) totally real minimal sub-manifolds in $Q P^{4}(c)$.
2. Preliminaries. Let $Q P^{n}(c)$ denote a $4 n$ dimensional quaternion projective space with constant quaternion sectional curvature $c>0$ and M be a totally real minimal submanifold in $Q P^{n}(c)$ of dimension n. In this paper we will use the same notations and terminologies as in [1]. It was proved in [1] that the second fundamental form of the immersion satisfies

$$
\begin{align*}
& \frac{1}{2} \Delta\|\sigma\|^{2}=\left\|\nabla^{\prime} \sigma\right\|^{2}+\sum \operatorname{tr}\left(A_{u} A_{v}-A_{v} A_{u}\right)^{2} \tag{2.1}\\
& \quad-\sum\left(\operatorname{tr} A_{u} A_{v}\right)^{2}+\frac{c}{4}(n+1)\|\sigma\|^{2}
\end{align*}
$$

Since $\sum \operatorname{tr}\left(A_{u} A_{v}-A_{v} A_{u}\right)^{2}$

$$
=-\sum_{u, v, k, l}\left(\sum_{m}\left(h_{k m}^{u} h_{l m}^{v}-h_{k m}^{v} h_{l m}^{u}\right)\right)^{2}
$$

this together with the equation of Gauss, implies

$$
\begin{equation*}
\sum \operatorname{tr}\left(A_{u} A_{v}-A_{v} A_{u}\right)^{2} \tag{2.2}
\end{equation*}
$$

1991 Mathematics Subject Classification: Primary 53C40; Secondary 53C42.

$$
=-\|R\|^{2}+c \rho-\frac{n-1}{8} n c^{2} .
$$

Similarly, we have

$$
\begin{gather*}
\Sigma\left(\operatorname{tr} A_{u} A_{v}\right)^{2}=\|S\|^{2}-\frac{n-1}{2} c \rho \tag{2.3}\\
+n\left(\frac{n-1}{4} c\right)^{2} .
\end{gather*}
$$

Combining (2.1) with (2.2), (2.3) and $\|\sigma\|^{2}=\frac{c}{4}$ $n(n-1)-\rho$, we obtain

$$
\begin{gather*}
\frac{1}{2} \Delta\|\sigma\|^{2} \tag{2.4}\\
=\left\|\nabla^{\prime} \sigma\right\|^{2}-\|R\|^{2}-\|S\|^{2}+\frac{n+1}{4} c \rho .
\end{gather*}
$$

3. Projectively flat totally real minimal submanifold. Suppose M is an n-dimensional compact oriented totally real minimal submanifold in $Q P^{n}(c)$, if M is projectively flat, then its projective curvature tensor $P^{[2]}$ satisfies
(3.1) $P(X, Y, Z, W) \stackrel{\text { def }}{=} R(X, Y, Z, W)-$ $(g(X, W) S(Y, Z)-g(Y, W) S(X, Z)) /(n-1)$
$=0$, where R, S, g are the curvature tensor, Ricci tensor and Riemannian metric of M respectively. From (3.1) we have

$$
\begin{equation*}
\|R\|^{2}=\frac{2}{n-1}\|S\|^{2} \tag{3.2}
\end{equation*}
$$

which, together with (2.4) asserts

$$
\begin{align*}
& \frac{1}{2} \Delta\|\sigma\|^{2}=\left\|\nabla^{\prime} \sigma\right\|^{2}+\frac{n+1}{n-1}\|S\|^{2} \tag{3.3}\\
&+\frac{n+1}{4} c \rho .
\end{align*}
$$

Taking the integrals of the both sides of (3.3) and using Green's theorem, we have

$$
\begin{gather*}
\int_{M}\left\|\nabla^{\prime} \sigma\right\|^{2} d V \tag{3.4}\\
=\int_{M}\left(\|S\|^{2} /(n-1)-\frac{c}{4} \rho\right)(n+1) d V
\end{gather*}
$$

On the other hand, by the Gauss-Bonnet theorem, when $n=4$, the Euler number $\chi(M)$ of

