Property C with Constraints for PDE

By A. G. RAMM
Department of Mathematics, Kansas State University, U.S.A. (Communicated by Kiyosi ITô, M. J. A., Dec. 12, 1996)

Abstract

Let $L_{j}, j=1,2$, be a pair of linear partial differential expressions in \boldsymbol{R}^{n}, $n \geq 3, D \subset \boldsymbol{R}^{n}$ be a bounded domain, $N_{j}:=\left\{w: L_{j} w=0\right.$ in $\left.D\right\}, N_{j, m_{j}}$ is a linear subspace in N_{j} of finite codimension $m_{j}<\infty$. We say that the pair $\left\{L_{1}, L_{2}\right\}$ has property C if the set of products $\left\{w_{1} w_{2}\right\}$ is complete (total) in $L^{p}(D)$ for some $p \geq 1$. Here $w_{j} \in N_{j}$ run through subsets of N_{j} such that the products $w_{1} w_{2}$ are well defined. We say that the pair $\left\{L_{1}\right.$, $\left.L_{2}\right\}$ has property C with constraints if the set $\left\{w_{1} w_{2}\right\}$, where $w_{j} \in N_{j, m}, j=1,2$, is total in $L^{p}(D)$. It is proved that if L_{1} and L_{2} have constant coefficients and the pair $\left\{L_{1}, L_{2}\right\}$ has property C then it has property C with constraints.

Key words: Property C with constraints; inverse problems; completeness of the set of products.

1. Introduction. The author introduced property C for pairs $\left\{L_{1}, L_{2}\right\}$ of linear partial differential expressions in [1] and has found many applications of this property [2]. In [3] he introduced property C with constraints and found several applications of this concept to inverse spectral problem, inverse boundary problem and inverse scattering problem.

In [2] necessary and sufficient conditions for property C to hold for a pair of linear partial differential expressions (formal differential operators) with constant coefficients are found.

The basic result of this paper is the following theorem.

Theorem 1.1. If $\left\{L_{1}, L_{2}\right\}$ are linear formal partial differential operators in $\boldsymbol{R}^{n}, n \geq 3$, with constant coefficients and property C holds for the pair $\left\{L_{1}, L_{2}\right\}$, then property C with constraints holds for this pair.

In section 2 we define property C and property C with constraints and recall some results from [2].

In section 3 we prove Theorem 1.1.

2. Basic definitions and known results.

2.1. Let $L_{m} u(x)=\sum_{|j| \leq J_{m}} a_{j m}(x) \partial^{j} u(x)$, $m=1,2, x \in \boldsymbol{R}^{n}, n \geq 2, j$ is a multi-index, $a_{j m}(x)$ are given functions, $J_{m}>0$ is an integer, $\partial^{j} u:=\frac{\partial^{j} u}{\partial x_{1}^{j_{1}} \cdots \partial x_{n}^{j n}}, j_{1}+\cdots+j_{n}:=|j|$. We

1991 Mathematics Subject Classification. 35E20, 35R30, 35P10.
call L_{m} a linear formal differential operator.
Let $D \subset \boldsymbol{R}^{n}$ be a bounded domain, $N_{m}:=$ $\left\{w: L_{m} w=0 \quad\right.$ in $\left.\quad D\right\}, f \in L^{p}(D), p \geq 1$. The equation $L_{m} w=0$ is understood in distributional sense. Assume that

$$
\begin{equation*}
\int_{D} f w_{1} w_{2} d x=0, \quad w_{m} \in N_{m} \tag{2.1}
\end{equation*}
$$

for all $w_{m} \in N_{m}$ for which $w_{1} w_{2} \in L^{p^{\prime}}(D), p^{\prime}=$ $\frac{p}{p-1}$.

Definition 2.1. If (2.1) implies that $f=0$, then we say that the pair $\left\{L_{1}, L_{2}\right\}$ has property C.

Remark 2.1. The name "property C " comes from "completeness of the set of products $\left\{w_{1} w_{2}\right\}$ [2].

We give now a necessary and sufficient condition for a pair $\left\{L_{1}, L_{2}\right\}$ of operators with constant coefficients, $a_{j m}(x)=a_{j m}=$ const, to have property C.

Define

$$
\begin{gather*}
\mathscr{L}_{m}:=\left\{z: z \in C^{n}, L_{m}(z)=0\right\}, \tag{2.2}\\
L_{m}(z)=\sum_{|j| \leq J_{m}} a_{j m} z^{j} .
\end{gather*}
$$

Let $T_{m}\left(z_{0}\right)$ be the tangent space in \boldsymbol{C}^{n} to the algebraic variety \mathscr{L}_{m} at the point z_{0}.

Theorem 2.1. ([2,p.44]). For a pair $\left\{L_{1}, L_{2}\right\}$ to have property C it is necessary and sufficient that there exist two points $z_{m} \in L_{m}$, such that the tangent spaces $T_{m}\left(z_{m}\right), m=1,2$, are transversal.

Remark 2.2. Geometrically this means that the variety $\mathscr{L}_{1} \cup \mathscr{L}_{2}$ is not a union of parallel hyperplanes in \boldsymbol{C}^{n}.
2.2. We now define property C with con-

