Property C with Constraints for PDE

By A. G. RAMM

Department of Mathematics, Kansas State University, U.S.A. (Communicated by Kiyosi ITÔ, M. J. A., Dec. 12, 1996)

Abstract: Let L_j , j = 1,2, be a pair of linear partial differential expressions in \mathbb{R}^n , $n \geq 3$, $D \subset \mathbb{R}^n$ be a bounded domain, $N_j := \{w : L_j w = 0 \text{ in } D\}$, N_{j,m_j} is a linear subspace in N_j of finite codimension $m_j < \infty$. We say that the pair $\{L_1, L_2\}$ has property C if the set of products $\{w_1 w_2\}$ is complete (total) in $L^p(D)$ for some $p \geq 1$. Here $w_j \in N_j$ run through subsets of N_j such that the products $w_1 w_2$ are well defined. We say that the pair $\{L_1, L_2\}$ has property C with constraints if the set $\{w_1 w_2\}$, where $w_j \in N_{j,m_j}$, j = 1,2, is total in $L^p(D)$. It is proved that if L_1 and L_2 have constant coefficients and the pair $\{L_1, L_2\}$ has property C then it has property C with constraints.

Key words: Property C with constraints; inverse problems; completeness of the set of products.

1. Introduction. The author introduced property C for pairs $\{L_1, L_2\}$ of linear partial differential expressions in [1] and has found many applications of this property [2]. In [3] he introduced property C with constraints and found several applications of this concept to inverse spectral problem, inverse boundary problem and inverse scattering problem.

In [2] necessary and sufficient conditions for property C to hold for a pair of linear partial differential expressions (formal differential operators) with constant coefficients are found.

The basic result of this paper is the following theorem.

Theorem 1.1. If $\{L_1, L_2\}$ are linear formal partial differential operators in \mathbb{R}^n , $n \geq 3$, with constant coefficients and property C holds for the pair $\{L_1, L_2\}$, then property C with constraints holds for this pair.

In section 2 we define property C and property C with constraints and recall some results from [2].

In section 3 we prove Theorem 1.1.

2. Basic definitions and known results.

2.1. Let $L_m u(x) = \sum_{|j| \le J_m} a_{jm}(x) \partial^j u(x)$, $m = 1, 2, x \in \mathbb{R}^n, n \ge 2, j$ is a multi-index, $a_{jm}(x)$ are given functions, $J_m > 0$ is an integer, $\partial^j u := \frac{\partial^j u}{\partial x_1^{j_1} \cdots \partial x_n^{j_n}}, j_1 + \cdots + j_n := |j|$. We call L_m a linear formal differential operator.

Let $D \subset \mathbb{R}^n$ be a bounded domain, $N_m := \{w: L_m w = 0 \text{ in } D\}, f \in L^p(D), p \ge 1$. The equation $L_m w = 0$ is understood in distributional sense. Assume that

(2.1) $\int_{D} f w_{1} w_{2} dx = 0, \quad w_{m} \in N_{m}$ for all $w_{m} \in N_{m}$ for which $w_{1} w_{2} \in L^{p'}(D), p' = \frac{p}{p-1}$.

Definition 2.1. If (2.1) implies that f = 0, then we say that the pair $\{L_1, L_2\}$ has property C.

Remark 2.1. The name "property C" comes from "completeness of the set of products $\{w_1w_2\}$ [2].

We give now a necessary and sufficient condition for a pair $\{L_1, L_2\}$ of operators with constant coefficients, $a_{jm}(x) = a_{jm} = const$, to have property C.

(2.2) Define

$$\mathcal{L}_m := \{ z : z \in C^n, L_m(z) = 0 \},$$

$$L_m(z) = \sum_{|i| \le L_m} a_{jm} z^i.$$

Let $T_m(z_0)$ be the tangent space in C^n to the algebraic variety \mathscr{L}_m at the point z_0 .

Theorem 2.1. ([2,p.44]). For a pair $\{L_1, L_2\}$ to have property C it is necessary and sufficient that there exist two points $z_m \in L_m$, such that the tangent spaces $T_m(z_m)$, m = 1,2, are transversal.

Remark 2.2. Geometrically this means that the variety $\mathcal{L}_1 \cup \mathcal{L}_2$ is not a union of parallel hyperplanes in \mathbb{C}^n .

2.2. We now define property C with con-

¹⁹⁹¹ Mathematics Subject Classification. 35E20, 35R30, 35P10.