On Some Examples of Modular QM-abelian Surfaces

By Yuii HASEGAWA

Department of Mathematics, Waseda University (Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1996)

1. Introduction. Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a (normalized) newform of weight two $\Gamma_0(N)$ with trivial Nebentypus character such that the field of Fourier coefficients $K_f :=$ $Q(\{a_n\}_{n=1}^{\infty})$ is a (real) quadratic field. Let A_f denote the associated abelian surface over \mathbf{Q} ([12], [13]). Then, $\operatorname{End}_{\boldsymbol{o}}(A_{f}) \otimes \boldsymbol{Q}$, the \boldsymbol{Q} -algebra of endomorphisms of A_t over Q_t , is exactly K_t . Let \mathfrak{X}_t denote the $oldsymbol{Q}$ -algebra of all endomorphisms of $A_f: \mathfrak{X}_f = \operatorname{End}_{\bar{\mathbf{Q}}}(A_f) \otimes \mathbf{Q}$. If f is a form with complex multiplication, i.e., if there is a Dirichlet character $\psi \neq 1$ such that $a_p = \psi(p)a_p$ for all $\not D \not X N$, then A_f / \bar{Q} is the product of two copies of an elliptic curve with complex multiplication by some imaginary quadratic field k, so that \mathfrak{X}_{f} = $M_2(k)$. In the following, we always assume that f does not have complex multiplication (and that K_f is a real quadratic field). Then \mathfrak{X}_f is either K_f , $\mathbf{M_2}(\mathbf{Q})$, or the quaternion division algebra B_D over Q with discriminant D > 1 (see [7], [8]). We say that A_t has quaternion multiplication (or sim-

ply QM) if $\mathfrak{X}_f = B_D$ for some D. **Definition.** Let $f = \sum a_n q^n$ be as above and let χ be a (primitive) Dirichlet character. Then f is said to possess the *extra twist* by χ if the equality

$$a_{p}^{\sigma} = \chi(p) a_{p}$$

holds for all $p \times N$, where σ is the non-trivial automorphism of K_f/Q . In this case, we say that χ is a *twisting character* of f.

Let f be a newform on $\Gamma_0(N)$ satisfying our assumption. Then $f^{\sigma} := \sum a_n^{\ \sigma} q^n$ is also a newform on $\Gamma_0(N)$. Further, if χ is any primitive quadratic Dirichlet character of conductor r, then $f^{\chi} := \sum a_n \chi(n) q^n$ is a cuspform on $\Gamma_0(N')$, where N' is the least common multiple of N and r^2 . See [13] for general background.

Now let f be a newform on $\Gamma_0(N)$ which possesses the extra twist by χ , say. Then χ is quadratic and the square of the conductor of χ divides N, and in fact $f^{\sigma} = f^{\chi}$. It is also easily seen that χ is a unique twisting character of f,

since f is a form without complex multiplication.

Proposition 1. Let f possess the extra twist by χ . Then

$$\mathfrak{X}_{f} = \left(\frac{d, \chi(-1)r}{Q}\right),\,$$

where $\left(\frac{a, b}{Q}\right)$ is the quaternion algebra over Q with reduced norm form $x^2 - ay^2 - bz^2 + abw^2$, d is the discriminant of K_f and r is the conductor of χ .

Proof. This is a special case of a result of [7], [8].

If f does not possess the extra twist, it is known that $\mathfrak{X}_f = K_f$.

Proposition 2. Let A_f be an abelian surface attached to a newform f of weight two on $\Gamma_0(N)$ and assume that A_f has QM. Let p be a prime divisor of N with $p^{\nu} \parallel N$. Then

- (1) $2 \le \nu \le 10$ if p = 2,
- (2) $2 \le \nu \le 5$ if p = 3,
- (3) $\nu = 2$ if $p \geq 5$.

Furthermore, N is divisible by 2^5 or by the square of some prime p such that $p \equiv 3 \pmod{4}$.

Proof. By assumption, f possesses the extra twist. If N is exactly divisible by a prime, then $\mathfrak{X}_f = \mathbf{M}_2(\mathbf{Q})$ by [9], Theorem 2. So $\nu \geq 2$ if A_f has QM. Put

$$s = \left\lceil \frac{\nu}{2} - 1 - \frac{1}{p-1} \right\rceil,$$

where [x] is the least integer $\geq x$. Then by [3], Theorem 5.5, the center of \mathfrak{X}_f contains $Q(\zeta + \zeta^{-1})$ if p > 2 (resp. $Q(\zeta^2 + \zeta^{-2})$ if p = 2), where ζ is a primitive p^s -th root of unity, hence we obtain the estimate for ν . The last part follows from [9], Theorem 3 and [1], Theorem 7. \square

An example of a QM-abelian surface attached to a newform of weight two on $\Gamma_0(N)$ is given by Koike [6]. In this case the level is $243=3^5$, $K_f=Q(\sqrt{6})$, $\chi=\left(\frac{-3}{\cdot}\right)$ and $\mathfrak{X}_f=\left(\frac{6,-3}{Q}\right)=B_6$. Since there are, as it seems, no other known examples, it might be interesting to find other examples of modular QM-abelian sur-