On the Rank of the Elliptic Curve $\mathrm{y}^{2}=\mathrm{x}^{3}+\mathrm{k}$. II

By Shoichi KIHARA
Department of Neuropsychiatry School of Medicine, Tokusima University
(Communicated by Shokichi IyAnagA, M. J. A., Dec. 12, 1996)

In this paper, we consider the elliptic curve (1)

$$
\varepsilon_{k}: y^{2}=x^{3}+k
$$

In our previous paper [3], we have shown that there are infinitely many values of $k \in \boldsymbol{Q}$, for which the rank of ε_{k} is at least 5 . We shall improve this result in this note. (See Theorem 2 below).

Let a, b, c be variables and put

$$
\begin{gathered}
k=E(a, b, c)=\left(a^{6}+b^{6}+c^{6}-2 a^{3} b^{3}-\right. \\
\left.2 b^{3} c^{3}-2 c^{3} a^{3}\right) / 4
\end{gathered}
$$

Then there are the following 3 points on ε_{k} :

$$
\begin{aligned}
& P_{1}\left(a b,\left(a^{3}+b^{3}-c^{3}\right) / 2\right) \\
& P_{2}\left(b c,\left(b^{3}+c^{3}-a^{3}\right) / 2\right) \\
& P_{3}\left(c a,\left(c^{3}+a^{3}-b^{3}\right) / 2\right)
\end{aligned}
$$

Now let t be a variable, and put
(2) $\quad a=3 t^{3}-49, \quad b=3 t^{3}+16, \quad c=39$
$d=-\frac{21}{2} t^{2}+\frac{196}{3 t}, e=\frac{24}{7} t^{2}+\frac{196}{3 t}$,
$f=\frac{117}{14} t^{2}$.
Then we have $E(a, b, c)=E(d, e, f)$ and
(3) $k=k(t)=\frac{3080025}{4} t^{12}-\frac{37083501}{2} t^{9}$

$$
\begin{aligned}
& +\frac{905714433}{4} t^{6} \\
& -1884391236 t^{3}+7953072400
\end{aligned}
$$

This polynomial $k(t)$ has the property

$$
\begin{equation*}
k(t)=k\left(\frac{m}{t}\right) \frac{t^{12}}{m^{6}}, \text { where } m=\frac{14}{3} \tag{4}
\end{equation*}
$$

and our curve $\varepsilon_{k(t)}$ has the following 6 points:

$$
\begin{aligned}
& P_{1}\left(9 t^{6}-99 t^{3}-784,\right. \\
& \left.27 t^{9}-\frac{891}{2} t^{6}+\frac{23913}{2} t^{3}-86436\right) \\
& P_{2}\left(117 t^{3}+624,\right. \\
& \left.\quad \frac{1755}{2} t^{6}-\frac{19305}{2} t^{3}+90532\right) \\
& P_{3}\left(117 t^{3}-1911,\right. \\
& \left.\frac{1755}{2} t^{6}-\frac{19305}{2} t^{3}+31213\right)
\end{aligned}
$$

$$
\begin{aligned}
& P_{4}\left(-36 t^{4}-462 t+\frac{38416}{9 t^{2}}\right. \\
& \left.\frac{1701}{2} t^{6}-\frac{23913}{2} t^{3}+45276-\frac{7529536}{27 t^{3}}\right) \\
& P_{5}\left(\frac{1404}{49} t^{4}+546 t\right. \\
& \left.\quad \frac{611091}{686} t^{6}-\frac{19305}{2} t^{3}+89180\right) \\
& P_{6}\left(-\frac{351}{4} t^{4}+546 t\right. \\
& \left.\quad \frac{2457}{8} t^{6}-\frac{19305}{2} t^{3}+89180\right)
\end{aligned}
$$

We remark also that our $k(t) \in \boldsymbol{Q}[t]$ has no square factor in $\boldsymbol{Q}[t]$ and that two elliptic curves $\varepsilon_{k_{1}}, \varepsilon_{k_{2}}$ for $k_{1}, k_{2} \in \boldsymbol{Q}^{*}=\boldsymbol{Q}-\{0\}$ are \boldsymbol{Q}-isomorphic if and only if $k_{2} / k_{1}=i^{6}$ for some $i \in$ \boldsymbol{Q}^{*}. (cf. [1], §10, Corollary 5.4.1). As the Diophantine equation $k_{1} u^{6}=k(t)$ for $t, u \in \boldsymbol{Q}^{*}$ (with a given $k_{1} \in \boldsymbol{Q}^{*}$) has only a finite number of solutions by Faltings' theorem, we obtain an infinite number of $\varepsilon_{k(t)}$ with $k(t) \in \boldsymbol{Q}^{*}$ with 6 rational points which are not \boldsymbol{Q}-isomorphic, in specializing $t \in \boldsymbol{Q}$ in different ways.

Now we shall show that our $\varepsilon_{k(t)}$ has another point $P_{7}\left(x_{7}, y_{7}\right)$, using the following elliptic curve.
(5) $C: q^{2}=p^{3}+n, \quad n=9256741632090000$.

We have $n=2^{4} * 3^{4} * 5^{4} * 79^{2} * 1831129$, where 1831129 is a prime number, which assures that C has no torsion point (cf. [1] p.323). On the other hand, C contains the point (443664,310783788), so that C has an infinite number of rational points (p, q). Put $t=-$ $p / 142200$ Then $\varepsilon_{k(t)}$ contains $P_{7}\left(x_{7}, y_{7}\right)$ where
$x_{7}=\frac{13 p^{3}}{2^{10} 3^{4} 5^{6} 79^{3}}-\frac{169 q}{18960000}-\frac{235911}{800}$
$y_{7}=\frac{13 p^{6}}{2^{19} 3^{9} 5^{11} 79^{6}}+\frac{15821 p^{3}}{2^{12} 3^{3} 5^{7} 79^{3}}-\frac{6591 q}{126400000}$

$$
+\frac{1362504013}{16000}
$$

Theorem 1. P_{1}, \ldots, P_{7} are independent

