Division Polynomials of Elliptic Curves Over Finite Fields

By J. CHEON and S. HAHN

Department of Mathematics, Korea Advanced Institute of Science and Technology, Republic of Korea (Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1996)

Abstract: We consider an elliptic curve E over the finite field F_p for a prime $p \neq 2,3$. We get the complete description of the p^k -th division polynomials for any positive integer k when E is supersingular. Also, we get a property of the division polynomials when E is ordinary.

Key words : Elliptic curves; supersingular; division polynomials.

Let p be a prime number $\neq 2, 3$ and $q = p^k$ for some positive integer k. Consider an elliptic curve E over the finite field F_{p} given by a Weierstrass equation:

 $y^2 = x^3 + Ax + B; \quad A, B \in \mathbf{F}_p.$

For any $M = (x, y) \in E(F_{b})$ and an integer m, the point mM is given by

$$mM = \left(\frac{\phi_m(M)}{\phi_m(M)^2}, \frac{\omega_m(M)}{\phi_m(M)^3}\right),$$

where $\phi_m(M)$ and $\psi_m(M)^2$ are relatively prime polynomials in $F_{p}[x]$ [3]. Moreover, we have the formula [1]:

formula [1]:

$$\psi_{mn}(M) = \psi_m(M)^{n^2} \psi_n(mM)$$
(1)

$$\phi_{mn}(M) = \psi_m(M)^{2n^2} \phi_n(mM)$$

$$\omega_{mn}(M) = \psi_m(M)^{3n^2} \omega_n(mM)$$
for only positive integens m , m

for any positive integers m, n.

We say that E is supersingular over F_{μ} if Ehas no nontrivial p-torsion point in the algebraic closure \bar{F}_{p} of F_{p} . In this case, $\psi_{p}(M)$ is a non-zero constant because $\phi_{p}(M)$ has no solution in \bar{F}_{p} . Otherwise, we say that E is ordinary over F_{p} . From now on, every polynomial is considered as an element of $\bar{F}_{b}[x]$.

Lemma 1. Suppose that E is supersingular over F_{p} . Let $M = (x, y) \in E(\bar{F}_{p})$. Then

$$\omega_p(M) = y^{p^2}.$$

Proof. From Eq. (1) and the definition of $\omega_{h}(M)$, it follows that

$$\psi_{2p}(M) = \psi_2(M)^{p^2} \psi_p(2M)$$

$$\psi_{2p}(M) = 2\psi_p(M) \omega_p(M).$$

Note that $\psi_p(M) = \psi_p(2M)$ because $\psi_2(M)$ is a constant. Since $\psi_2(M) = 2y$, we get

$$\omega_{p}(M) = \frac{1}{2} \phi_{2}(M)^{p^{2}} = y^{p^{2}}.$$

Theorem 1. Suppose that E is supersingular over $\mathbf{F}_{\mathbf{b}}$. Let $M = (x, y) \in E(\bar{\mathbf{F}}_{\mathbf{b}})$. Then

$$\psi_p(M) = -1, \, \omega_p(M) = y^{p^2}, \, \phi_p(M) = x^{p^2}.$$

Proof. Since E is supersingular over F_{p} , $|E(\mathbf{F}_{p})| = p + 1$, i.e. $M_{0} \in E(\mathbf{F}_{p})$ implies pM_{0} $= -M_0$. Let $M_0 = (x_0, y_0)$ be a nontrivial element of $E(\mathbf{F}_{b})$. Then

(2)
$$\left(\frac{\phi_p(M_0)}{\psi_p(M_0)^2}, \frac{\omega_p(M_0)}{\psi_p(M_0)^3}\right) = -M_0 = (x_0, -y_0).$$

Since $\omega_p(M) = y^{p^2}$, we see $\psi_p(M_0)^3 = -1$. But $\psi_p(M)$ is a constant, so that $\psi_p(M)^3 = -1$.

Since
$$mM = \left(\frac{\phi_m(M)}{\phi_m(M)^2}, \frac{\omega_m(M)}{\phi_m(M)^3}\right)$$
 is a point

of E, we get

$$\left(\frac{\phi_p(M)}{\phi_p(M)^2}\right)^3 + A \frac{\phi_p(M)}{\phi_p(M)^2} + B = \left(\frac{\omega_p(M)}{\phi_p(M)^3}\right)^2,$$

 $\phi_p(M)^3 - A\phi_p(M)\phi_p(M) + B - y^{2p^2} = 0.$ Using $y^2 = x^3 + Ax + B$, it can be factored as follows:

(3)
$$(\phi_{p}(M) - \psi_{p}(M)^{2}x^{p^{2}})(\phi_{p}(M)^{2} + \psi_{p}(M)^{2}x^{p^{2}}\phi_{p}(M) - \psi_{p}(M)x^{2p^{2}} - A\psi_{p}(M)) = 0.$$

If $A \neq 0$, the second factor of Eq. (3) is irreducible in $\bar{F}_{p}[x]$ since its discriminant equals to $\psi_{p}(M)(3x^{2p^{2}}+4A)$, which is not a square in $\bar{F}_{p}[x]$. If A = 0, Eq. (3) is factored as follows:

$$(\phi_{p}(M) - \psi_{p}(M)^{2}x^{p^{2}})(\phi_{p}(M) - \alpha x^{p^{2}}) \cdot (\phi_{p}(M) - \beta x^{p^{2}}) = 0,$$

if we let α , β be two roots of the equation t^2 + $\psi_p(M)^2 t - \psi_p(M) = 0$. In both the cases, $\phi_p(M)$ $= x^{p^2}$ because the leading coefficient of $\phi_p(M)$

¹⁹⁹¹ Mathematics Subject Classification. 11G20, 14H52.