A New Version of the Factorization of a Differential Equation of the Form $F(x, y, \tau y)=0$

By Raymond GERard*) and Hidetoshi TAhara**)

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1996)

In this note, we will consider equations of the form
$\left(\mathrm{E}_{0}\right) \quad F(x, y, \tau y)=0$,
where $F(x, y, X)$ is a holomorphic function defined in a neighborhood of the origin of $\left(\boldsymbol{C}_{x}\right)^{n} \times$ $\boldsymbol{C}_{y} \times \boldsymbol{C}_{X}$, and τ is a vector field

$$
\tau=\sum_{1 \leqslant i \leqslant n} \alpha_{i}(x, y) \partial / \partial x_{i}
$$

with coefficients $\alpha_{i}(x, y)(1 \leqslant i \leqslant n)$ meromorphic in x at most with only poles along a union of a finite number of hyperplanes (in $\left(\boldsymbol{C}_{x}\right)^{n}$) and holomorphic in y near the origin of $\left(\boldsymbol{C}_{x}\right)^{n} \times \boldsymbol{C}_{y}$.

If $F(x, y, X)$ is of finite order, say m, with respect to the variable X by Weierstrass preparation theorem $F(x, y, X)=0$ is equivalent to

$$
X^{m}+\sum_{1 \leqslant j \leqslant m} a_{j}(x, y) X^{m-j}=0
$$

and $\left(\mathrm{E}_{0}\right)$ is reduced to
(E) $(\tau y)^{m}+\sum_{1 \leqslant j \leqslant m} a_{j}(x, y)(\tau y)^{m-j}=0$.

In our previous paper [1] we have presented a factorization theorem for (E) which asserts that (E) is factorized into a product of equations of the form $\tau y=f(x, y)$ near the point $x=0$. In this note we will present a new version of this theorem.
§1. Factorization theorems. Let us consider the following differential equation:
(E) $\quad F(x, y, \tau y)=(\tau y)^{m}+\sum_{1 \leqslant j \leqslant m}$

$$
a_{j}(x, y)(\tau y)^{m-j}=0
$$

where $m \in \boldsymbol{N}^{*}(=\{1,2, \ldots\}), x=\left(x_{1}, \ldots, x_{n}\right)$ $\in \boldsymbol{C}^{n}, n \in \boldsymbol{N}^{*}, y \in \boldsymbol{C}$, and $a_{j}(x, y)(1 \leqslant j \leqslant m)$ are holomorphic functions defined in a neighborhood of the origin $(0,0)$ of $\left(\boldsymbol{C}_{x}\right)^{n} \times \boldsymbol{C}_{y}$. In (E), y $=y(x)$ is regarded as an unknown function of x and τ is a vector field of the form

$$
\tau=\sum_{1 \leqslant i \leqslant n} \alpha_{i}(x, y) \partial / \partial x_{i}
$$

whose coefficients $\alpha_{i}(x, y)(1 \leqslant i \leqslant n)$ are meromorphic in x at most with only poles along a union of a finite number of hyperplanes (in $\left(\boldsymbol{C}_{x}\right)^{n}$) and holomorphic in y in a neighborhood of the origin $(x, y)=(0,0)$ in $\left(\boldsymbol{C}_{x}\right)^{n} \times \boldsymbol{C}_{y}$.

[^0]Definition 1. We say that the transformation

$$
x=\left(x_{1}, \ldots, x_{n}\right) \rightarrow t=\left(t_{1}, \ldots, t_{n}\right)
$$

is of type ($G T$) if it is defined by the following: first we transform $x=\left(x_{1}, \ldots, x_{n}\right) \rightarrow \xi=\left(\xi_{1}\right.$, \ldots, ξ_{n}) by $x=A \xi$ for some $A \in G L(n, C)$ and then we transform $\xi \rightarrow t$ by
$\xi_{1}=\left(t_{1}\right)^{k}, \xi_{2}=\left(t_{1}\right)^{k} t_{2}, \ldots, \xi_{n}=\left(t_{1}\right)^{k} t_{n}$ for some $k \in \boldsymbol{N}^{*}$.

The result of our previous paper [1] is as follows:

Theorem 1 ([Theorem 2.2; 1]). After a suitable transformation $x \rightarrow t$ which is obtained by a composition of a finite number of transformations of type ($G T$), we can choose $c \in \boldsymbol{C}$ such that the following conditions hold:

1) $c=0$ or $|c|$ is sufficiently small;
2) by setting $y=c+z$ the equation (E) is decomposed in a neighborhood of the origin $(0,0) \in$ $\left(\boldsymbol{C}_{t}\right)^{n} \times \boldsymbol{C}_{\boldsymbol{z}}$ into the form
(1.1) $\quad \Pi_{1 \leqslant j \leqslant m}\left(\tau^{*} z-\varphi_{j}(t, z)\right)=0$,
where τ^{*} is the transform of τ by the transformation $x \rightarrow t$ and $\varphi_{j}(t, z)(1 \leqslant j \leqslant m)$ are holomorphic functions defined in a neighborhood of $(0,0) \in$ $\left(\boldsymbol{C}_{t}\right)^{n} \times \boldsymbol{C}_{2}$.

Note that the original equation (E) is considered near $(x, y)=(0,0)$; but the decomposition (1.1) is obtained in a neighborhood of $(x, y)=$ $(0, c)$ which may exclude the point $(x, y)=$ $(0,0)$ in case $c \neq 0$. Therefore, if we want to study the behaviour of the solutions of (E) near the origin $(0,0)$ we must fill some gaps between (E) and (1.1).

To fill up the gap we will present here a new version of factorization theorem. In our new result, instead of using transformations of type (GT) and a shift $y=c+z$ we will use the following transformation:

Definition 2. We say that the transformation
$(x, y)=\left(x_{1}, \ldots, x_{n}, y\right) \rightarrow(t, z)=\left(t_{1}, \ldots, t_{n}, z\right)$ is of type ($N G T$) if it is defined by the follow.

[^0]: *) Institut de Recherche Mathématique Alsacien, Université Louis Pasteur, France.

 * *) Department of Mathematics, Sophia University.

