Gamelin Constants of Two-sheeted Discs

By Masaru HARA
Department of Mathematics, Meijo University
(Communicated by Kiyosi ITÔ, M. J. A., Nov. 12, 1996)

For any $0<\delta<1$ and n, an n-tuple $\left\{f_{j}\right\}$ of functions $f_{1}, \ldots ., f_{n}$ in the family $H^{\infty}(R)$ of bounded holomorphic functions on a Riemann surface R is referred to as a corona datum of index (n, δ) if the following condition is satisfied:
$\delta \leq\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2} \leq 1$.
An n-tuple $\left\{g_{j}\right\}$ of functions g_{1}, \ldots, g_{n} in $H^{\infty}(R)$ is said to be a corona solution of the datum $\left\{f_{j}\right\}$ if $\sum_{j} f_{j} g_{j}=1$. The quantity $C(R ; n, \delta)$ given by (2) $C(R ; n, \delta)=\sup _{\left\{f_{j}\right\}}\left(\inf _{\left\{g_{j}\right\}}\left(\sup _{p \in R}\left(\sum_{j}\left|g_{j}(p)\right|^{2}\right)^{1 / 2}\right)\right)$ will be referred to as the Gamelin constant of R of index (n, δ) where the first supremum is taken with respect to corona data $\left\{f_{j}\right\}$ of index (n, δ) on R and the infimum is taken with respect to corona solutions $\left\{g_{j}\right\}$ of each fixed datum $\left\{f_{j}\right\}$ under the usual convention that $\inf _{\left\{g_{j}\right\}}$ $=\infty$ if there exist no corona solutions $\left\{g_{j}\right\}$ of the datum $\left\{f_{j}\right\}$.

We assume that R is a two-sheeted unlimited covering surface over the unit disc D, which we call a two-sheeted disc. We will show the following

Theorem 1. For each $0<\delta<1$, there exists a constant $C(\delta)$ depending only on δ such that

$$
\begin{equation*}
C(\delta)=\sup _{n}\left(\sup _{R} C(R ; n, \delta)\right)<\infty \tag{3}
\end{equation*}
$$

where n runs over all positive integers and R runs over all two-sheeted discs.

Corollary. Let R be any two-sheeted disc. Let $\left\{f_{j}\right\}$ be a sequence of functions in $H^{\infty}(R)$ such that $0<\delta \leq\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{1 / 2} \leq 1$. Then there exists a sequence of functions $\left\{g_{j}\right\}$ in $H^{\infty}(R)$ and a constant $c(\delta)$ depending only on δ such that $\sum_{j} f_{j} g_{j}=$ 1 and $\left(\sum_{j}\left|g_{j}\right|^{2}\right)^{1 / 2} \leq c(\delta)$.
Let (R, π, D) be any two-sheeted disc with projection π. For any f in $H^{\infty}(D)$, the function $f \cdot \pi$ belongs to $H^{\infty}(R)$. We identify f with $f \cdot \pi$, so that $H^{\infty}(D)$ is a subset of $H^{\infty}(R)$. If R has too many branch points, it holds that $H^{\infty}(R)=$ $H^{\infty}(D)$, where Corollary was proved by M. Rosenblum [5] and V. A. Tolokonnikov [6] (cf. [4]).

1. In order to prove Theorem 1, by a normal families argument it is enough to show the following

Theorem 2. Let R be a two-sheeted disc defined by a two-valued function $\zeta=\sqrt{B}$, where B is a finite Blaschke product whose zeros are all simple. If an n-tuple of
(4) $\quad f_{j}=a_{j}+b_{j} \sqrt{B} \quad(j=1, \ldots, n)$
is a corona datum of index (n, δ) on R such that a_{j} and b_{j} are holomorphic on some neighbourhood of \bar{D}, then there exists a corona solution $\left\{g_{j}\right\}$ of $\left\{f_{j}\right\}$ such that

$$
\left(\sum_{j}\left|g_{j}\right|^{2}\right)^{1 / 2} \leq C \delta^{-12}
$$

where C is a constant independent of δ, B and n.
We will prove Theorem 2 in $\S \S .2-7$. In $\S .2$ we introduce a function ρ, which plays an important role in our proof. In $\S \S .3$ and 4 corona solutions are given. By duality, those estimates are reduced to ones of four functions, which are accomplished in $\S \S .5$ and 6 . Our proof is concluded in §.7.
2. Let (\cdot, \cdot) and $\|\cdot\|$ be the inner product and norm of \boldsymbol{C}^{n}. Let $a=\left(a_{1}, \cdots, a_{n}\right), b=\left(b_{1}, \cdots\right.$, $\left.b_{n}\right)$ and $f=\left(f_{1}, \cdots, f_{n}\right)$,
(5) $\rho=\|a\|^{4}+\|b\|^{4}|B|^{2}-(a, b)^{2} \bar{B}-(b, a)^{2} B$
$+\left(\|a\|^{2}\|b\|^{2}-|(a, b)|^{2}\right)\left(|B|^{2}+1\right)$,
(6) $x_{j}=\left(\|a\|^{2}+\|b\|^{2}\right) a_{j}-\{(a, b)+(b, a) B\} b_{j}$ and
(7) $y_{j}=-\{(a, b)+(b, a) B\} a_{j}$
$+\left(\|a\|^{2}+\|b\|^{2}\right) B b_{j}$.
Proposition 1. ρ, x_{j} and y_{j} are smooth on some neighbourhood of \bar{D} such that $\rho \geq \delta^{4}$ and $\sum_{j}\left(a_{j}+b_{j} \sqrt{B}\right)\left(\bar{x}_{j}+\bar{y}_{j} \sqrt{B}\right)=\rho$.

Proof. By (1) and (4), we have
$\sum_{j}\left|a_{j}+b_{j} \sqrt{B}\right|^{2} \geq \delta^{2}$ and $\sum_{j}\left|a_{j}-b_{j} \sqrt{B}\right|^{2} \geq \delta^{2}$. Since $2|B| \leq|B|^{2}+1$ and

$$
\begin{aligned}
& \left(\sum_{j}\left|a_{j}+b_{j} \sqrt{B}\right|^{2}\right)\left(\sum_{j}\left|a_{j}-b_{j} \sqrt{B}\right|^{2}\right) \\
& =\|a\|^{4}+\|b\|^{4}|B|^{2}-(a, b)^{2} \bar{B}-(b, a)^{2} B \\
& \quad+2\left(\|a\|^{2}+\|b\|^{2}-|(a, b)|^{2}\right)|B|,
\end{aligned}
$$

we obtain $\rho \geq \delta^{4}$.
We may assume that functions x_{j} and y_{j} are smooth and have compact supports in the com-

