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1. Introduction and results. The purpose
of the present paper is to study the best constant
in the imbedding theorems for the weighted
Sobolev spaces with weight functions being pow-
ers of [xl. We shall deal with the weighted
Sobolev spaces denoted by W,’(Rn) and

1,p r),R,,,,(R where p, n, a fl satisfy n _> 2, 1 < p
< n/(1 cr-+-fl) and ,fl > n/p (See also
(1.5)). Let L(Rn) denote the space of Lebesgue
measurable functions, defined on Rn, for which

(1 1) u" L(R) u I x dx

W,(R") is defined as the completion of C
with respect to the norm

where q q(p, , fl, n) is the so-called Sobolev
exponent defined by

(1.3) q q(p, a, fl, n)
np

n p(1 a + fl)"
Here we note that q satisfies the equality in (1.5),
and if a fl then q equals np/(n--p),

1,PRa,E(R is defined as

(1.4) R,,z(R) {u W2,(Rn) u is a radial
function}.

We shall study the following variational
problems. Assume that p, q, n, a and fl satisfy

nk2,
(1.5)

0 < 1/p- 1/q (1-a + )/n
and
(1.6) n/q < fl a.
Under these assumptions (1.5) and (1.6), we set

(P) S(p, q, , ) inf gllz dz

In the following problem (PR), we assume instead
of the inequality (1.6)
(1.7) n/q < fl.
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Under the assumptions (1.5) and (1.7), we set
(P)

SR(P, q, or, fl, n) inf[; 117u I’ Ixl’ dx;

u R.’’(R I[u;L(R [1= 1

By a suitable change of variables this variational
,P

problem (Ps) in the radial space R,z(R is re-
duced to prove the classical Sobolev inequality,
which was solved by G. Talenti using the notion
of Hilbert invariant integral (Lemma 2 in [12]),
and the infimum is achieved by functions of the
form

(1.8) v(x) [a + b Ix
h= n -p(1 a + B)

Then with somewhat more calculations we see
Lemma 1.1. Assume that (1.5) and (1.7).

Then we have
(1.9) s(p, q, a,
(.o) I(p, q,

=’n" }-1 -rP

rP F(n /2) F(n / r)
where r 1 a + . In pticular if , then
we have
(1.11) SR(P, q, , , n) S(p, q, n)

N--p
where we set S(p, q, n) S(p, q, O, O, n) con-
ventionally.

Therefore we immediately get
Lemma 1.2. Assume that 1/p 1/q

1/, 1 < p < n and n > 2. Ira > 0 [respectively
< 0], then it holds that S(p, q, n) < SR(p, q,

a, , n) [respectively S(p, q, n) > S(p, q,, n)]. Here S(p, q, n) S(p, q, 0, 0, n) as

(1.11).
From this lemma it seems that if 0,

S(p, q, , , n) is also the best constant for


