On the Rank of the Elliptic Curve $y^2 = x^3 - 2379^2x$

By Fidel R. NEMENZO

Department of Mathematics, Sophia University (Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1996)

Let n be a positive square-free integer and r_n be the rank of the elliptic curve $C: y^2 = x^3 - x^3$ $n^2 x$. When n = 2379, the zero at s = 1 of the Hasse-Weil L-function of C has order 2, which is conjectured by Birch and Swinnerton-Dyer to be the rank $r_{\rm 2379}$. We will use Tate's method to show that r_{2379} is effectively equal to 2.

We write $x \sim y$ whenever $x/y = u^2$ for some rational number u. Consider two types of **Diophantine equations:**

(1) $dX^4 + (4n^2/d)Y^4 = Z^2; d \mid 4n^2; d + 1$ (2) $dX^4 - (n^2/d)Y^4 = Z^2; d \mid n^2; d + \pm 1, \pm n$

Now let $D = (d_1, d_2, \ldots, d_n)$ be the set of distinct (i.e. inequivalent pairwise) d's such that

(1) is solvable in integers X, Y, and Z with (X, X) $(4n^2/d)YZ = (Y, dXZ) = 1$ and $D' = \{d_{\mu+1}, dXZ \}$ $\ldots, d_{u+\nu}$ be the set of d's such that (2) is solvable in integers X, Y, and Z with $(X, (n^2/d) YZ)$ = (Y, dXZ) = 1. Then $2^{r_n+2} = (1 + \mu)(4 + \nu)$. See Silverman and Tate [5].

Let $n = 2379 = 3 \cdot 13 \cdot 61$. We first consider the Diophantine equations of the first type and determine μ . We have

 $13(6)^4 + 2^2 \cdot 3^2 \cdot 13 \cdot 61^2(1)^4 = (1326)^2$ and $61(2)^4 + 2^2 \cdot 3^2 \cdot 13^2 \cdot 61(1)^4 = (610)^2$

so d = 13, d = 61 and $d = 13 \cdot 61$ are in D. The equations (1) for d = 2, 3 and 6 can be shown to have no solutions by, say, considering them modulo 3. Hence $\mu = 3$.

In order to show that $r_{2379} = 2$, it will suffice to show that the following equations do not have solutions under the conditions stated above.

 $3 \cdot 13X^4 - 3 \cdot 13 \cdot 61^2 Y^4 = -Z^2$ (3)

 $3 \cdot 13 \cdot 61^{2}X^{4} - 3 \cdot 13Y^{4} = -Z^{2}$ $13 \cdot 61X^{4} - 3^{2} \cdot 13 \cdot 61Y^{4} = Z^{2}$ $13 \cdot 61 \cdot 3^{2}X^{4} - 13 \cdot 61Y^{4} = Z^{2}$ (4)

(5)

$$(6) 13 \cdot 61 \cdot 3^{-} X^{-} - 13 \cdot 61 Y^{-} = Z^{-}$$

(7)
$$3 \cdot 61X^* - 3 \cdot 61 \cdot 13^2Y^* = -Z^2$$

 $3 \cdot 61 \cdot 13^2 X^4 - 3 \cdot 61 Y^4 = -\overline{Z}^2$ (8)

Lemma. Let a be odd, b even, $c = a^2 - b^2$ square-free, and x odd, y even, (x, y) = 1 and $x^2 - y^2 = cz^2$. Then

$$(ax + by + cz)(ax - by - cz) = c(y - bz)^{2}$$

and

 $(ax + by + cz, ax - by - cz) = 2e^2$ for some integer e, so that we can find integers c_1 , c_2 , u and v such that $ax = c_1u^2 + c_2v^2$ and c = $c_1 c_2$.

Proof. See Wada [3].

Suppose (3) is solvable. Then for some integer W.

$$X^4 - 61^2 Y^4 = -3 \cdot 13W^2$$
 or
 $(X^2)^2 - (61Y^2)^2 = (5^2 - 8^2)W^2.$

Letting $x = X^2$, $y = 61Y^2$, $z = W^2$, a = 5 and b= 8, we see that (x, y) = 1. If both x and y are odd, or if x is even and y odd, the two sides of the equation above will not be congruent modulo 16. Hence we can apply the lemma and get

 $5X^2 = c_1u^2 + c_2v^2$ and $c_1c_2 = -3.13$. Since (5/13) = -1 and (3/13) = 1, we have contradiction. Hence (3) is not solvable.

If (4) is solvable, then $(61X)^2 - (Y^2)^2 =$ $(5^2 - 8^2) W^2$. Thus we have $5 \cdot 61X^2 = c_1 u^2 +$ $c_2 v^2$ and $c_1 c_2 = -3 \cdot 13$. In modulo 13, the right side of the equation is a square while left is not. Hence, (4) is not solvable.

If (5) has solutions X, Y and Z, then for some integer W,

 (X^2)

$$(3Y^2)^2 = 13 \cdot 61W^2$$

= $(37^2 - 24^2)W^2$.

The two sides of the equation are not congruent modulo 16 unless X is odd and Y is even. Applying the lemma, we have

$$37X^2 = c_1u^2 + c_2v^2$$
 and $c_1c_2 = 13.61.$

Since (37/13) = -1 and (61/13) = 1, we have a contradiction, and hence (5) has no solution. Similarly, (6) has no solution.

Lastly, we show that (7) and (8) are not solvable. If (7) has solutions X, Y and Z, then for some integer W,

$$(X^{2})^{2} - (13Y^{2})^{2} = -3 \cdot 61W^{2}$$

= $(29^{2} - 32^{2})W^{2}$.

X is odd and Y is even, so we can apply the lem-