Non-congruent Numbers with Arbitrarily Many Prime Factors Congruent to 3 Modulo 8

By Boris ISKRA

Department of Mathematics, University of Illinois, U.S.A. (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1996)

Introduction. In this paper we are going to show the existence of an infinite set of primes congruent to 3 modulo 8, such that any product of primes in this set is a non-congruent number. The existence of such a sequence implies the existence of an elementary 2-extension of infinite degree over which the rank of the elliptic curve $E: y^2 = x^3 - x$ remains zero. The question about the existence of such an extension was posed by Kida in [1] §3. The proof below is based on a result of Serf [2] which gives an upper bound for the rank of the elliptic curve $E_n : y^2 = x^3 - n^2 x$.

Theorem. Let p_1, \ldots, p_l be distinct primes such that $p_i \equiv 3 \pmod{8}$ and $\left(\frac{p_j}{p_i}\right) = -1$ for j < i. Then the product $n = p_1 \cdots p_l$ is a noncongruent number.

Notes:

1) Since
$$p_i \equiv 3 \pmod{8}$$
,
 $\left(\frac{-1}{p_i}\right) = \left(\frac{2}{p_i}\right) = -1$.
2) $\left(\frac{p_j}{p_i}\right) = 1$ if $i < j$.
3) Let $n = n_i \cdot p_i$; then
 $\left(\frac{n_i}{p_i}\right) = (-1)^{i-1}$.

4) Let b be a divisor of n, and put

$$b' = \frac{b}{p_i} \text{ if } p_i \mid b,$$

= b if $p_i \nmid b.$
Let $k = | \{j : p_j \mid b \text{ and } j < i\} |$; then
 $\left(\frac{b'}{p_i}\right) = (-1)^k.$

Proof. To show that n is a non-congruent number we will use Theorem 3.3 and Corollary 3.4 in [2] to see that for all pairs $(b_1, b_2) \notin$ {(1,1); (-1, -n); (n, 2); (-n, -2n)} with $b_i \in \{\pm 2^{\varepsilon} p_1^{\varepsilon_1} \cdots p_l^{\varepsilon_l} | \varepsilon, \varepsilon_1, \ldots, \varepsilon_l \in \{0,1\}\}$ there is no solution for the system of equations: $\begin{cases}
b_1 z_1^2 - b_2 z_2^2 = n \\
b_1 z_1^2 - b_1 b_2 z_3^2 = -n
\end{cases}$

Using the general unsolvability-condition and the unsolvability-condition mod 2 in [2] §3, we are left with $b_1 \cdot b_2 > 0$ and $2 \nvDash b_1$.

Case 1.
$$b_2 > 0$$
 and $2 \not\prec b_2$. Define
 $r = min\{i ; p_i \mid b_1 \text{ or } p_i \mid b_2\}$
If r exists then

If *r* exists then

$$\begin{pmatrix} \underline{b}_1' \\ \overline{p}_r \end{pmatrix} = 1 \begin{pmatrix} \underline{b}_2' \\ \overline{p}_r \end{pmatrix} = 1$$

If $p_r | b_1$ and $p_r | b_2$ then $(v_{p_r}(b_1), v_{p_r}(b_2)) =$ (1,1) and

$$\left(\frac{-n_r b_1'}{p_r}\right) = -(-1)^{r-1} = (-1)^{r}$$
$$\left(\frac{-2n_r b_2'}{p_r}\right) = (-1)^{r-1}$$

One of the two Jacobi symbols is equal to -1and therefore there is no solution.

If $p_r | b_1$ and $p_r \not < b_2$ then $(v_{p_r}(b_1), v_{p_r}(b_2)) =$ (1,0) and

$$\left(\frac{2b_2}{p_r}\right) = -1$$

and there is no solution.

If $p_r \nmid b_1$ and $p_r \mid b_2$ then $(v_{b_1}(b_1), v_{b_2}(b_2)) =$ (0,1) and

$$\left(\frac{-b_1}{p_r}\right) = -1$$

and there is no solution.

Therefore r does not exist, which implies that no prime divides b_1 or b_2 and then (b_1, b_2) = (1,1).

Case 2. $b_2 > 0$ and $2 | b_2$. Define

$$r = min\{i : p_i \not\vdash b_1 \text{ or } p_i \mid b_2\}$$

If *r* exists then
$$\left(\frac{b_1'}{a}\right) = (-1)^{r-1}$$

$$\binom{p_r}{\binom{b_2'}{p_r}} = -1$$

If $p_r \not\prec b_1$ and $p_r \mid b_2$ then $(v_{p_r}(b_1), v_{p_r}(b_2)) =$ (0.1) and