Non-congruent Numbers with Arbitrarily Many Prime Factors Congruent to 3 Modulo 8

By Boris ISKRA
Department of Mathematics, University of Illinois, U.S.A.
(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1996)

Introduction. In this paper we are going to show the existence of an infinite set of primes congruent to 3 modulo 8 , such that any product of primes in this set is a non-congruent number. The existence of such a sequence implies the existence of an elementary 2 -extension of infinite degree over which the rank of the elliptic curve $E: y^{2}=x^{3}-x$ remains zero. The question about the existence of such an extension was posed by Kida in [1] §3. The proof below is based on a result of Serf [2] which gives an upper bound for the rank of the elliptic curve $E_{n}: y^{2}=x^{3}-n^{2} x$.

Theorem. Let p_{1}, \ldots, p_{l} be distinct primes such that $p_{i} \equiv 3(\bmod 8)$ and $\left(\frac{p_{j}}{p_{i}}\right)=-1$ for $j<i$. Then the product $n=p_{1} \cdots p_{l}$ is a noncongruent number.

Notes:

1) Since $p_{i} \equiv 3(\bmod 8)$,

$$
\left(\frac{-1}{p_{i}}\right)=\left(\frac{2}{p_{i}}\right)=-1
$$

2)

$$
\left(\frac{p_{j}}{p_{i}}\right)=1 \text { if } i<j
$$

3) Let $n=n_{i} \cdot p_{i}$; then

$$
\left(\frac{n_{i}}{p_{i}}\right)=(-1)^{i-1}
$$

4) Let b be a divisor of n, and put

$$
\begin{aligned}
b^{\prime} & =\frac{b}{p_{i}} \text { if } p_{i} \mid b \\
& =b \text { if } p_{i} \times b
\end{aligned}
$$

Let $k=\mid\left\{j: p_{j} \mid b\right.$ and $\left.j<i\right\} \mid$; then

$$
\left(\frac{b^{\prime}}{p_{i}}\right)=(-1)^{k}
$$

Proof. To show that n is a non-congruent number we will use Theorem 3.3 and Corollary 3.4 in [2] to see that for all pairs $\left(b_{1}, b_{2}\right) \notin$ $\{(1,1) ;(-1,-n) ;(n, 2) ;(-n,-2 n)\}$ with $b_{i} \in\left\{ \pm 2^{\varepsilon} p_{1}^{\varepsilon_{1}} \cdot \cdots p_{l}^{\varepsilon_{l}} \mid \varepsilon, \varepsilon_{1}, \cdots, \varepsilon_{l} \in\{0,1\}\right\}$ there is no solution for the system of equations:

$$
\left\{\begin{array}{c}
b_{1} z_{1}^{2}-b_{2} z_{2}^{2}=n \\
b_{1} z_{1}^{2}-b_{1} b_{2} z_{3}^{2}=-n
\end{array}\right\}
$$

Using the general unsolvability-condition and the unsolvability-condition $\bmod 2$ in [2] §3, we are left with $b_{1} \cdot b_{2}>0$ and $2 \times b_{1}$.

Case 1. $b_{2}>0$ and $2 \nless b_{2}$. Define

$$
r=\min \left\{i ; p_{i} \mid b_{1} \text { or } p_{i} \mid b_{2}\right\}
$$

If r exists then

$$
\begin{aligned}
& \left(\frac{b_{1}^{\prime}}{p_{r}}\right)=1 \\
& \left(\frac{b_{2}^{\prime}}{p_{r}}\right)=1
\end{aligned}
$$

If $p_{r} \mid b_{1}$ and $p_{r} \mid b_{2}$ then $\left(v_{p_{r}}\left(b_{1}\right), v_{p_{r}}\left(b_{2}\right)\right)=$ $(1,1)$ and

$$
\begin{aligned}
& \left(\frac{-n_{r} b_{1}^{\prime}}{p_{r}}\right)=-(-1)^{r-1}=(-1)^{r} \\
& \left(\frac{-2 n_{r} b_{2}^{\prime}}{p_{r}}\right)=(-1)^{r-1}
\end{aligned}
$$

One of the two Jacobi symbols is equal to -1 and therefore there is no solution.

If $p_{r} \mid b_{1}$ and $p_{r} \times b_{2}$ then $\left(v_{p_{r}}\left(b_{1}\right), v_{p_{r}}\left(b_{2}\right)\right)=$ $(1,0)$ and

$$
\left(\frac{2 b_{2}}{p_{r}}\right)=-1
$$

and there is no solution.
If $p_{r} \nless b_{1}$ and $p_{r} \mid b_{2}$ then $\left(v_{p_{r}}\left(b_{1}\right), v_{p_{r}}\left(b_{2}\right)\right)=$ $(0,1)$ and

$$
\left(\frac{-b_{1}}{p_{r}}\right)=-1
$$

and there is no solution.
Therefore r does not exist, which implies that no prime divides b_{1} or b_{2} and then $\left(b_{1}, b_{2}\right)$ $=(1,1)$.

Case 2. $\quad b_{2}>0$ and $2 \mid b_{2}$.
Define

$$
r=\min \left\{i: p_{i} \times b_{1} \text { or } p_{i} \mid b_{2}\right\}
$$

If r exists then

$$
\begin{aligned}
& \left(\frac{b_{1}^{\prime}}{p_{r}}\right)=(-1)^{r-1} \\
& \left(\frac{b_{2}^{\prime}}{p_{r}}\right)=-1
\end{aligned}
$$

If $p_{r} \times b_{1}$ and $p_{r} \mid b_{2}$ then $\left(v_{p_{r}}\left(b_{1}\right), v_{p_{r}}\left(b_{2}\right)\right)=$ $(0,1)$ and

