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Introduction. When an elliptic curve E
over Q is given by a Weierstrass model like
y2= X + aX2 + bX + c, it is difficult to pro-
duce points of E(Q) with certainty except some
torsion points. To make such a plan work well,
we might restrict ourselves to certain family of
elliptic curves where the coefficients a, b, c are
determined by a rule. Suggested by the antique
congruent number problem for right triangles

([7], see also [1]), we obtained, using arbitrary
triangles, a family of infinitely many elliptic
curves each of which is provided with a ’canonic-
al’ nontorsion point Po (x0, Yo)([4], see also
[2]).

In this paper, we shall pursue the same
theme in a mere general setting whereby replac-
ing triangles by quadratic forms. As is stated in
the main theorem (1. 7), the canonical point P0
might possibly belong to a quadratic extension of
Q, and so we needed to call up the Hopf maps to
handle the matter, l)

1. The set W. Let k be a field of charac-
teristic q= 2, V a vector space of finite dimension
over k, q a nondegenerate quadratic form on V
and B a symmetric bilinear form corresponding
to q. Hence we have the relations

1
(1.1) B(u, v) - (q(u + v) q(u) q(v)),

q(u) B(u, u), u, v V.
To each pair w (u, v) V V, weset

1
(1.2) P B(u, v), Q, =- (B(u, v)

11 B(u, u) B(u, v)
q(u)q(v)) 4 B(v, u) B(v, v)

Note that
(1.3) P- 4Q, q(u)q(v).

1) We hope there is a better way to evade quadra-
tic extensions than employing Hopf maps. By the way,

the relationship between Hopf maps and elliptic curves

in this paper is logically irrelevant to the one described
in [5].

2) For an element a k we denote by a$ any once
of square roots of a. Here qv(u v) means (q(u v)).

Consider a plane cubic given by
(1.4) E y x + Px + Qx
The discriminant of (1.4)is A 16Q(P-
4Qw). Hence,

Ew is elliptic <=> A 4= 0
(B (u, v) q(u) q(v)) q(u) q(v)) 4= O.

In view of the last equality in (1.2), we have

(1.5) E is elliptic <=> U, V are independent
and nonisotropic.

Let us introduce the set
(1.6) W= {w= (u, v) Vx V, E is elliptic}.
(1.7) Theorem. For w (u, v) W, put

/2 (12Xo q(u- V)/4, Yo q V)(q(v) q(U))/8.2)

Then Po (:Co, o) belongs to Ew(k(qV(u- v))).
Proof Straightforward calculation using

(1.1), (1.2), (1.).
(1.8) Remark. If we want the point Po in E(k),
we need w (u, v) W such that q(u- v) is
a square. This calls upon us to use a Hopf map.

2. Hopf map h. Notation being the same
as in {}1, we assume further that V has a vector t

such that q(e) 1. We shall fix this vector once
for all and put U (kt) +/-, the orthogonal com-
plement of the line kt. For a vector v at + u,
a k, u U, wehave
(2.1) q(v) a + qv(u)
where qv denotes the restriction of q on U. Next,
let Z X@ Y be an orthogonal direct sum de-
composition of a nondegenerate quadratic space
(Z, qz) over k, and let qx, qY be the restrictions
of qz on X, Y, respectively. We assume that
there is a bilinear map fl:X X Y-- U such that
(2.2) qv(fl(x, y)) qx(x)qr(Y).
In this situation, we define the Hopf map h:Z---*
V by
(2.3) h(z) (qx(X) qr(y))e + 2fl(x, y),

z=x+yZ.
One verifies easily, using (2.1), (2.2), (2.3), that

2
(2.4) q(h(z)) qz(z).
The map h sends a sphere in Z to a sphere in V.
Now we introduce,a useful set:
(2.5) Z*= (z= (x,y) Z=X Y;


