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Introduction. M. Lelong [6] and L. Naim [8] (cf. e.g. [2]). For informations about fundamental
obtained a criterion of Wiener type for minimal properties of balayage we refer to [1],[2], [5], etc.
thinness for the Martin compactification of the The following lemma gives us the relation
upper half space of the d-dimensional Euclidean between the balayage on F and that on a cover-
space (d > 1). The purpose of this note is to ing surface of F.
give a criterion of Wiener type for minimal thin- Lemma 1.1 (cf. [7]). Let " be an unlimited
ness for the Martin compactification of a finite covering surface ofF, E a subset ofF, s a positive

sheeted covering surface of a punctured Rieman- superharmonic function on F and re the canonical
nian sphere. It is sufficient to consider an projection from F onto F. The_n, it holds that

F "E Fzt-1 (E)
r-sheeted unlimited covering surface W of D- Rs zr- -so

{0} (D is the unit disc). Denote by W the rela- on F.
rive boundary of W and zr- zrw the projection of Next we state the definition of thinness (cf.
I/vV W t3 W onto {0 < [z] <- 1}. We consider [1]). Let GF be the Green function on F with pole
the Martin cornpactification W* of W. Then W* at z.
takes a form W* W(3 W[3 A, where A is Definition 1.1. Letz be a point of F and E a

F"E
the ideal boundary of a bordered surface W. We subset of F. We say that E is thin at z if RG =/=

also denote by zl the set of minimal points in A. Gz on F.
We note that 1 <_ # A1 <_ r, where # A is the Assuming that E is closed and z belongs to
number of points in A (cf. [4]). Let A {,..., E in the above definition, it is well-known that
m}(m- # A) and denote by kj- kij(j-1,..., E is thin at z if and only if z is an irregular
m) the Martin function with pole at j. We set U point of F- E with respect to Dirichlet problem
--{w W’k(w)> i,ki(w)}(j: 1,..., m) (cf. e.g. [2]). In the case of F: D--{z C"
in the case of m > 1 and U1- W in the case of 1} we here review the Wiener criterion
m 1. for thinness.

Main theorem. Let E be a subset of W and j Proposition 1.1 (cf. [1]). Let L be a subset of
be an integer with 1 <_ j

_
m. Set E, {w D. Set

E C? U’sn<- kj(w) <- s"+)(s> 1). Then, E is

minimally thin at if and only if

E caPw(E)s < + oo,

where caPw(En) is the outer Green capacity of En.

1. Preliminaries 1.1 We begin with re-

L.= {zL’s" <log[z[- <_ s+}(s> 1).
Then, L is thin at 0 if and only if

cap (L) s < + oo,
n=l

where CaPv (Ln) is the outer Green capacity of Ln.

1.2. First we begin with definition of
calling the definition of balayage. Consider an minimal thinness. Let k be the Martin function
open Riemann surface F possessing the Green on F with pole at A.
function. Denote by z3(F) the class of all Definition 1.2 (cf. [1]). Let be a point of
nonnegative superharrnonic functions on F. Let E A and E a subset of F. Then, we say that E is

be a subset of F and s belong to x3. Then the minimally thin at if/ 4: k on F.
F^E F

balayage s R of s relative to E on F is de- Definition 1.3. Let be a point of A and
fined by U a subset of F. We say that UU {),is a

Rs (z) lim inf inf{u(x) "u 3, u > s on E) minimal fine neighborhood of if F- U is mini-
mally thin at .


