A Characterization of Reflexivity

By Sever S. DRAGOMIR

Department of Mathematics, Timişoara University, România (Communicated by Kiyosi ITÔ, M. J. A., Sept. 12, 1996)

Let $(X, \|\cdot\|)$ be a real normed space and consider the norm derivatives

$$(x, y)_{i(s)} := \lim_{t \to 0^{-(+)}} (||y + tx||^2 - ||y||^2)/2t.$$

Note that these mappings are well defined on $X \times X$ and the following properties are valid (see also [1] or [2]):

- (i) $(x, y)_i = -(-x, y)_s$ if x, y are in X;
- (ii) $(x, x)_{p} = ||x||^{2}$ for all x in X;
- (iii) $(\alpha x, \beta y)_p = \alpha \beta (x, y)_p$ for all x, y in X and $\alpha \beta \ge 0$;
- (iv) $(\alpha x + y, x)_p = \alpha ||x||^2 + (y, x)_p$ for all x, y in X and $\alpha \in \mathbf{R}$;
- (v) $(x + y, z)_{p} \leq ||x|| ||z|| + (y, z)_{p}$ for all x, y, z in X;
- (vi) the element x in X is Birkhoff orthogonal over y in X (we denote $x \perp y$), i.e., $||x + ty|| \ge ||x||$ for all t in \mathbf{R} iff $(y, x)_i \le 0 \le (y, x)_s$;
- (vii) the space X is smooth iff $(y, x)_i = (y, x)_s$ for all x, y in X or iff $(,)_p$ is linear in the first variable;

where p = s or p = i.

We will use the following well known result due to R.C. James [3]

Theorem (James). The Banach space X is reflexive iff for any closed hyperplane H in X containing the null vector there exists an element $u \in X \setminus \{0\}$ so that $u \perp H$.

The following characterization of reflexivity also holds:

Theorem. Let X be a real Banach space. The following statements are equivalent:

(i) X is reflexive;

(ii) For every $F: X \to \mathbf{R}$ a continuous convex mapping on X and for any $x_0 \in X$ there exists an element $u_{F,x_0} \in X$ so that the estimation

(1)
$$F(x) \ge F(x_0) + (x - x_0, u_{F,x_0})_i$$
holds for all x in X.

Proof. "(i) \Rightarrow (ii)". Since F is continuous convex on X, F is subdifferentiable on X, i.e., for every $x_0 \in X$ there exists a functional $f_{x_0} \in$

 X^* so that

(2) $F(x) - F(x_0) \ge f_{x_0}(x - x_0)$ for all x in X.

X being reflexive, then, by James' theorem, there is an element $w_{F,x_0} \in X \setminus \{0\}$ such that $w_{F,x_0} \perp \operatorname{Ker}(f_{x_0})$. Since

 $f_{x_0}(x) w_{F,x_0} - f(w_{F,x_0}) x \in \text{Ker}(f_x)$ for all x in X, by the property (vi), we get that

$$(f_{x_0}(x) w_{F,x_0} - f_{x_0}(w_{F,x_0}) x, w_{F,x_0})_i \leq 0$$

$$\leq (f_{x_0}(x) w_{F,x_0} - f_{x_0}(w_{F,x_0}) x, w_{F,x_0})_s$$

for all x in X, which are equivalent, by the above properties of $(,)_p$, with

 $(x, u_{F,x_0})_i \leq f_{x_0}(x) \leq (x, u_{F,x_0})_s$ for all x in X where

 $u_{F,x_0} := f_{x_0}(w_{F,x_0}) w_{F,x_0} / || w_{F,x_0} ||^2.$

Now, by (2) we obtain the estimation (1).

"(ii) \Rightarrow (i)". Let H be as in James' theorem and $f \in X^* \setminus \{0\}$ with H = Ker(f). Then, by (ii), for F = f and $x_0 = 0$, there exists an element $u_f \in X$ so that

 $f(x) \ge (x, u_f)_i$ for all x in X.

Substituting x by (-x) we also have

 $f(x) \leq (x, u_f)_s$ for all x in X.

Now, we observe that $u_f \neq 0$ (because $f \neq 0$) and then

 $(x, u_f)_i \leq 0 \leq (x, u_f)_s$ for all x in H,

i.e., $u_f \perp H$ and by James' theorem we deduce that X is reflexive.

Corollary 1. Let X be a real Banach space. Then X is reflexive iff for every $p: X \to \mathbf{R}$ a continuous sublinear functional on X there is an element u_p in X so that

 $p(x) \ge (x, u_p)_i$ for all x in X.

Corollary 2. [2]. Let X be a real Banach space. Then X is reflexive iff for every $f \in X^*$ there is an element u_f in X so that

 $(x, u_f)_i \leq f(x) \leq (x, u_f)_s$ for all x in X.

Corollary 3. [2]. Let X be a real Banach space. Then X is smooth and reflexive iff for all $f \in X^*$ there is an element $u_f \in X$ so that

 $f(x) = (x, u_f)_p$ for all x in X

where p = s or p = i.