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1. Introduction. In this paper we shall
consider the sign of solutions of certain nonlinear
wave equations subject to suitable homogeneous
boundary conditions. It is related to the oscilla-
tion behavior of continuous finite bodies with re-
spect to the time variable.

Let 2 be a bounded simply connected do-
Ra

main in and 0O be its smooth boundary.
We suppose all functions and solutions

appeared in this paper to be real-valued. We

denote--7 (k- 1,2... n) by 0k and- by 0t.

We shall consider the nonlinear wave equa-
tion
(1) u Ot(o(t)Otu) at- fl(t)Otu + Nu 0 in

DxR+,
and the homogeneous boundary condition
(2) u(x, t) 0 on Of2 x R+,
where N is a nonlinear differential operator on x
defined exactly afterwards.

When 2V is a linear elliptic differential oper-
Aator on x D, e.g. A or the oscillating be

havior is well investigated within the framework
of the eigenvalue problems. For the linear case
we refer to Chapter 5 and 6 of [41. When :V is
nonlinear, it seems that the results have been
obtained less compared with the linear case.
Cazenave and Haraux have obtained some re-
markable results (see [31 and [71) when :V is
semilinear. In [121 results for simpler equations
than those of this paper are stated. Besides them
we referto [21 and [91.

In this paper 3/ is supposed to be more
general than that of Cazenave and Haraux. We
shall show that there exist different points (xl,
tl) and (x, t) in D x R+ such as U(Xl, t)u(x.,
t) < 0, as is the unsatisfactory result for show-
ing oscillation of u.

Elliptic differential operator of second order
is typical of A/ and in this case we prescribe the
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boundary condition to be the homogeneous Diri-
chlet boundary condition, i.e. u 0 on O.O x R+.

2,Besides we can consider 2V to be th order for
rn 2,... with suitable boundary conditions.
For simplicity we shall treat only the rn--2
case. Then we prescribe its boundary condition
to be one concerned with a supported edge. Here
we shall state the second order case in detail.

We don’t prove the existence of solutions of
initial-boundary value problems satisfying (1),
(2) and suitable initial conditions with suitable
compatibility conditions, but we suppose the ex-

istence of unique global solutions in time (see A.2
in {}3 and A.5 in {}4).

2. Preliminary results. In this section we
shall prepare and collect several auxiliary re-
sults.

Let c, , 7"" R--’ R be continuous, and c be
a positive function of C 1. We define the ordinary
differential operator l by
(3) l(ly) (t) (a(t)y’(t))’ + fl(t)y’(t) + 7"(t)y(t),

d
where means dr"

Lemma 2.1. Let x(t) and y(t) satisfy (lx) (t)
<_ 0 and (ly)(t)= 0 in [to oo) associated with

X(to) Y(to) and x" (to) Y’ (to) for any fixed to,
respectively. If y(t) >--0 and x(t) =/: 0 for t >--to,
then x(t) <-- y(t) for t >-- to.

Proof Since
y(Ix) x(ly) {a(x’y- xy’)} + fl(x’y- xy’) <_ O,
we get

a(t) (x’y xy’) (t) exp(ft---to (s)c(s) ds-)
<_ a(to (x’y xy’) (to O,

whence (x’y- xy’)(t) <--O. It follows from (x’y
xy’) (t) <- 0 and x(t) 4= 0 that

y(t)x(t)) >0.

Hence we have x(t) g y(t) for t --> to. Q.E.D.
In subsequent sections we shall apply the re-

sult which assures the existence of zeros of solu-
tions of the differential equation ly 0 to obtain


