The Maximal Finite Subgroup in the Mapping Class Group of Genus 5

By B. BATTSENGEL
Department of Mathematical Sciences, University of Tokyo
(Communicated by Heisuke Hironaka, M. J. A. , Sept. 12, 1996)

Abstract

The automorphism groups of compact Riemann surfaces of genus 5 are enumerated by A. Kuribayashi and H. Kimura. Among them, the group of largest order is a group of order 192. The Riemann surface with this automorphism group is unique, and it is realized as the modular curve $X(8)$ of level 8 . By utilizing this, we have explicit construction of the finite subgroup of order 192 in the Teichmüller group of genus 5 .

0. Introduction. The compactified modular curve $X(8)$ of level 8 corresponding to the principal congruence subgroup $\Gamma(8)$ of $\Gamma(1)=S L_{2}(Z)$ defines a compact complex algebraic curve of genus 5 . We are interested in the following problem. Its modulus $\left[X(8)\right.$] in the moduli space μ_{5} of genus 5 curves defines a (singular) point. \mathcal{M}_{5} is given as a quotient space $\Gamma_{5} \backslash \mathscr{T}_{5}$ of the Teichmüller space \mathscr{T}_{5} of genus 5 by the Teichmüller group Γ_{5} of genus 5. Let $[X(8)]^{\sim}$ be a point of \mathscr{T}_{5} corresponding to a marking $\beta: \pi_{1}(X(8), *)$ $\simeq \pi_{5}$, here π_{5} is the surface group of genus 5 . Then by a Theorem of Kerckhoff ([1]), the stabilizer of $[X(8)]^{\sim}$ in Γ_{5} is isomorphic to the automorphism group $\operatorname{Aut}(X(8)) \cong S L_{2}(\boldsymbol{Z} / 8 \boldsymbol{Z}) /\{ \pm 1\}$. Our problem is to give an explicit description of this stabilizer in $\Gamma_{5}=\mathrm{Out}^{+}\left(\pi_{5}\right)$ in terms of canonical basis of π_{5}. The same problem for the Klein curve $X(7)$ of genus 3 have been solved by Matsuura using different ideas. ([5])
1. Some general facts. First we briefly describe the well-known construction of the canonical generators in the fundamental group of compact Riemann surface $X_{\Gamma}=\Gamma \backslash \mathfrak{g}^{*}$ corresponding to a Fuchsian group of first kind $\Gamma \subset$ $S L_{2}(\boldsymbol{R})$ ([3]). We are interested in the case when the action of Γ on \mathfrak{g} is fixed-point free. Choose a base point $\Gamma x_{0} \in X_{\Gamma}$, take as a fundamental domain of X_{r} the domain

$$
\mathscr{D}=\bigcap_{r \in \Gamma}\left\{x \in \mathfrak{G} \mid d\left(x, x_{0}\right) \leq d\left(x, \gamma x_{0}\right)\right\},
$$

where d is $S L_{2}(\boldsymbol{R})$-invariant metric on \mathfrak{g}. Choose an orientation from left to right on the boundary of \mathscr{D}. Each side a of \mathscr{D} has its conjugate a^{-1}, let $\gamma_{a} \in \Gamma$ be a map $a \rightarrow a^{-1}$. Denote by $\delta(a)$, the homotopy class of the loop $\delta_{1} \delta_{2}$, where
δ_{1} is a path from x_{0} to the endpoint of a and δ_{2} is a bath from initial point of a^{-1} to x_{0}. Then for any relation $\Pi a_{i}^{ \pm 1}=1$ among boundary sides we have $\Pi \delta\left(a_{i}^{ \pm 1}\right)=1$ with the same exponents. Thus, we have $\delta\left(a^{-1}\right)=\delta(a)^{-1}$. There is another important relation between our loops: for a vertex P of \mathscr{D} let $a(P)$ be the boundary side starting at P, denote $\sigma(P)=\gamma_{a(P)}(P)$. The cycle of vertex P is a finite set of vertices $\left\{\sigma^{n}(P) \mid n \in N\right\}$. When the cycle of P is $\left\{P, \sigma(P), \ldots, \sigma^{k}(P)\right\}$, we have a relation $\Pi_{i=0}^{k} \delta\left(a\left(\sigma^{i}(P)\right)\right)=1$. After eliminating these relations from the fundamental relation, we will get a relation in exactly $2 g$ loops, which generate the fundamental group $\pi_{1}\left(X_{\Gamma}\right.$, Γx_{0}), here $g=$ genus $\left(X_{\Gamma}\right)$.

Suppose that, in the fundamental relation two sides a, b and their conjugates a^{-1}, b^{-1} occur in the order $\ldots a \ldots b \ldots a^{-1} \ldots b^{-1} \ldots$. That is, we can write the fundamental relation as $a W b X a^{-1} Y b^{-1} Z=1$, where W, X, Y, Z are blocks of sides. Firstly, we denote $e=W b X$, our relation transforms to $a e a^{-1} Y X e^{-1} W Z=1$ (gluing b on b^{-1}), secondly denote $d=X^{-1} Y^{-1} a$ then, we get a relation $\operatorname{ded}^{-1} e^{-1} W Z Y X=1$ (gluing a on a^{-1}). After g times repetitions of this procedure we find a generator system with relation $\prod_{i=1}^{g}$ $\left[d_{i}, e_{i}\right]=1$, here $[a, b]$ is the commutator $a b a^{-1} b^{-1}$. ([3] section 7.4)

Let now $x_{1}, x_{2} \in \mathfrak{g}^{*}$ be two points such that $\Gamma x_{1}=\Gamma x_{2}=\Gamma x_{0}$. Then the path δ connecting x_{1}, x_{2} in \mathfrak{g}^{*} defines a closed path on $X_{\Gamma}(\mathbf{C})$, therefore its homotopy class in $\pi_{1}\left(X_{\Gamma}, \Gamma x_{0}\right)$ can be expressed in terms of our canonical generators. The following simple argument give us one such expression. Assume that, δ intersects with the

