The Automorphism Group of the Klein Curve in the Mapping Class Group of Genus 3

By Atsushi MatsuUra
Department of Mathematical Sciences, University of Tokyo
(Communicated by Heisuke Hironaka, M. J. A., Sept. 12, 1996)

Let R be a compact Riemann surface of genus $g \geq 2$. Then $\operatorname{Aut}(R)$, the automorphism group of R, can be embedded into the mapping class group (for its definition, see[$\mathbf{1}, \mathrm{Ch} .4]$) or the Teichmüller group Γ_{g} of genus g;

$$
\begin{equation*}
\iota: \operatorname{Aut}(R) \hookrightarrow \Gamma_{g} \simeq \operatorname{Out}^{+}\left(\pi_{1}(R)\right)= \tag{1}
\end{equation*}
$$

$$
\text { Aut }^{+}\left(\pi_{1}(R)\right) / \operatorname{Int}\left(\pi_{1}(R)\right) .
$$

Here, $\mathrm{Aut}^{+}\left(\pi_{1}(R)\right)$ consists of the automorphisms of $\pi_{1}(R)$ inducing the trivial action on $H_{2}\left(\pi_{1}(R)\right.$, $\boldsymbol{Z}) \simeq \boldsymbol{Z}$.

Recall the Hurwitz theorem, which states that
(2)

$$
\# \operatorname{Aut}(R) \leq 84(g-1)
$$

If the equality holds in (2), then R is called a Hurwitz Riemann surface and $\operatorname{Aut}(R)$ is called a Hurwitz group.

Let X be the Klein curve of genus 3 defined by the equation

$$
x^{3} y+y^{3} z+z^{3} x=0
$$

It is well known that X is a Hurwitz Riemann surface; $G:=\operatorname{Aut}(X)$ is isomorphic to $P S L_{2}\left(\boldsymbol{F}_{7}\right)$ and has order 168.

Now let us forget about the Klein curve, and consider an orientable compact C^{∞} surface X of genus 3 . We define the canonical generators of $\pi_{1}(X, b)$ with base point b as in the figure 1 .
They satisfy the fundamental relation
(3) $\left(\alpha_{1} \beta_{1} \alpha_{1}^{-1} \beta_{1}^{-1}\right)\left(\alpha_{2} \beta_{2} \alpha_{2}^{-1} \beta_{2}^{-1}\right)\left(\beta_{3} \alpha_{3} \beta_{3}^{-1} \alpha_{3}^{-1}\right)=1$. Let $\tilde{\varphi}_{2}, \tilde{\varphi}_{3}, \tilde{\varphi}_{7}$ be the elements of $\operatorname{Aut}^{+}\left(\pi_{1}(X)\right)$ defined by

$$
\begin{aligned}
& \tilde{\varphi}_{2}\left(\alpha_{1}\right)= \alpha_{2} \beta_{2}^{-1} \alpha_{2}^{-1} \alpha_{1}^{-1} \beta_{3}^{-1} \beta_{2} \\
& \tilde{\varphi}_{2}\left(\beta_{1}\right)=\beta_{2}^{-1} \beta_{3} \beta_{1}^{-1} \alpha_{2} \beta_{2} \alpha_{2}^{-1} \\
& \tilde{\varphi}_{2}\left(\alpha_{2}\right)= \beta_{3}^{-1} \alpha_{2}^{-1} \\
& \tilde{\varphi}_{2}\left(\beta_{2}\right)=\alpha_{2} \beta_{3} \beta_{2}^{-1} \alpha_{2}^{-1} \\
& \tilde{\varphi}_{2}\left(\alpha_{3}\right)=\alpha_{2} \beta_{2}^{-1} \alpha_{2}^{-1} \beta_{1}^{-1} \alpha_{1}^{-1} \alpha_{3} \alpha_{2}^{-1} \\
& \tilde{\varphi}_{2}\left(\beta_{3}\right)=\alpha_{2} \beta_{3} \alpha_{2}^{-1}, \\
& \tilde{\varphi}_{3}\left(\alpha_{1}\right)=\alpha_{2} \beta_{3} \alpha_{3}^{-1} \alpha_{1} \alpha_{2} \beta_{2} \alpha_{2}^{-1} \\
& \tilde{\varphi}_{3}\left(\beta_{1}\right)=\alpha_{2} \beta_{2}^{-1} \alpha_{2}^{-1} \alpha_{1}^{-1} \alpha_{3} \alpha_{1} \alpha_{2} \beta_{2} \alpha_{2}^{-1} \\
& \tilde{\varphi}_{3}\left(\alpha_{2}\right)=\alpha_{3}^{-1} \alpha_{1} \beta_{1} \alpha_{1}^{-1} \\
& \tilde{\varphi}_{3}\left(\beta_{2}\right)=\alpha_{1} \beta_{1}^{-1} \alpha_{1}^{-1} \alpha_{3} \alpha_{2} \beta_{2}^{-1} \alpha_{2}^{-1} \beta_{1} \alpha_{1}^{-1}
\end{aligned}
$$

$$
\begin{gathered}
\tilde{\varphi}_{3}\left(\alpha_{3}\right)=\alpha_{2} \beta_{2} \alpha_{2} \beta_{2}^{-1} \alpha_{2}^{-1} \beta_{1} \\
\tilde{\varphi}_{3}\left(\beta_{3}\right)=\alpha_{1} \beta_{1}^{-1} \alpha_{1}^{-1} \alpha_{3} \alpha_{2} \beta_{2}^{-1} \alpha_{2}^{-1} \beta_{1}, \\
\tilde{\varphi}_{7}\left(\alpha_{1}\right)=\beta_{1}^{-1} \alpha_{1}^{-1} \alpha_{3} \beta_{3}^{-1} \alpha_{2}^{-1} \\
\tilde{\varphi}_{7}\left(\beta_{1}\right)=\alpha_{2} \beta_{3} \alpha_{3}^{-1} \alpha_{1} \alpha_{2} \beta_{2} \alpha_{2}^{-1} \beta_{3}^{-1} \alpha_{2}^{-1} \\
\tilde{\varphi}_{7}\left(\alpha_{2}\right)=\alpha_{2} \beta_{2}^{-1} \alpha_{2}^{-1} \alpha_{1}^{-1} \\
\tilde{\varphi}_{1}\left(\beta_{2}\right)=\alpha_{1} \alpha_{2} \beta_{2} \beta_{3} \alpha_{3}^{-1} \\
\tilde{\varphi}_{7}\left(\alpha_{3}\right)=\beta_{1}^{-1} \alpha_{2} \beta_{2} \alpha_{2}^{-1} \alpha_{3}^{-1} \alpha_{1} \beta_{1} \alpha_{1}^{-1} \\
\quad \tilde{\varphi}_{7}\left(\beta_{3}\right)=\alpha_{1} \alpha_{2} \beta_{2} \alpha_{3}^{-1} \alpha_{1} \beta_{1} \alpha_{1}^{-1} .
\end{gathered}
$$

Then, we have the following:
Theorem 1. (1) The classes φ_{i} of $\tilde{\varphi}_{i}$ in $\mathrm{Out}^{+}\left(\pi_{1}(X)\right)$ generate a subgroup H of Γ_{3}, which is isomorphic to $P S L_{2}\left(\boldsymbol{F}_{7}\right)$.
(2) Moreover, if X is the Klein curve, then H is conjugate to the image of ℓ.
Outline of the proof. (1) First note that $H \neq\{1\}$, because the action of H on the homology group $H_{1}(X, Z)$ is not trivial. By direct computation using (3), we have

$$
\begin{align*}
& \tilde{\varphi}_{2}^{2}=\tilde{\varphi}_{3}^{3}=\tilde{\varphi}_{7}^{7}=1, \quad \tilde{\varphi}_{2} \tilde{\varphi}_{3} \tilde{\varphi}_{7}=1, \\
& \left.\left(\tilde{\varphi}_{7} \tilde{\varphi}_{3} \tilde{\varphi}_{2}\right)^{4}=\text { [conjugation by } \alpha_{2} \beta_{2}^{-1} \alpha_{2}^{-1} \beta_{1}\right] . \tag{4}
\end{align*}
$$

For example,

$$
\begin{aligned}
\tilde{\varphi}_{3}^{2} \cdot \beta_{3}= & \left(\alpha_{2}^{-1} \beta_{2} \alpha_{2} \alpha_{1} \alpha_{3} \alpha_{1}^{-1} \alpha_{2}^{-1} \beta_{2}^{-1} \alpha_{2}\right)\left(\alpha_{3} \alpha_{1}^{-1} \beta_{1}^{-1} \alpha_{1}\right) \\
& \times\left(\alpha_{1}^{-1} \beta_{1} \alpha_{1} \alpha_{3}^{-1} \alpha_{2}^{-1} \beta_{2} \alpha_{2} \beta_{1}^{-1} \alpha_{1}\right) \\
& \times\left(\beta_{1} \alpha_{2}^{-1} \beta_{2}^{-1} \alpha_{2} \beta_{2} \alpha_{2}\right) \quad\left(\alpha_{1}^{-1} \beta_{1} \alpha_{1} \alpha_{3}^{-1}\right) \\
& \times\left(\alpha_{2}^{-1} \beta_{3}^{-1} \alpha_{3} \alpha_{1}^{-1} \alpha_{2}^{-1} \beta_{2}^{-1} \alpha_{2}\right) \\
& \quad\left(\alpha_{2}^{-1} \beta_{2} \alpha_{2} \alpha_{1} \alpha_{3}^{-1} \alpha_{1}^{-1} \alpha_{2}^{-1} \beta_{2}^{-1} \alpha_{2}\right) \\
= & \alpha_{2}^{-1} \beta_{2} \alpha_{2}\left(\alpha_{1} \beta_{1} \alpha_{2}^{-1} \beta_{2}^{-1} \alpha_{2} \alpha_{2} \beta_{2} \beta_{3}^{-1} \alpha_{3}^{2} \alpha_{1} \alpha_{3}^{-1} \beta_{3} \alpha_{3} \alpha_{2}\right) \\
= & \alpha_{2}^{-1} \beta_{2} \alpha_{2} \beta_{1} \alpha_{1} \alpha_{3}^{-1} \alpha_{2},
\end{aligned}
$$

hence

$$
\begin{aligned}
\tilde{\varphi}_{3}^{3} \cdot \beta_{3}= & \left(\alpha_{3} \alpha_{1}^{-1} \beta_{1}^{-1} \alpha_{1}\right)\left(\alpha_{1}^{-1} \beta_{1} \alpha_{2}^{-1} \beta_{2}^{-1} \alpha_{2} \alpha_{3} \alpha_{1}^{-1} \beta_{1}^{-1} \alpha_{1}\right) \\
& \times\left(\alpha_{1}^{-1} \beta_{1} \alpha_{1} \alpha_{3}^{-1}\right) \\
& \times\left(\alpha_{2}^{-1} \beta_{2} \alpha_{2} \alpha_{2} \alpha_{3}^{-1} \beta_{2} \alpha_{2} \alpha_{1} \alpha_{3} \alpha_{1}^{-1} \alpha_{2}^{-1} \beta_{2}^{-1} \alpha_{2}\right) \\
= & \left(\alpha_{3} . \quad\left(\alpha_{2}^{-1} \beta_{2}^{-1} \alpha_{2}^{-1} \beta_{2} \alpha_{2} \beta_{1}^{-1}\right)\left(\alpha_{1}^{-1} \beta_{1} \alpha_{1} \alpha_{3}^{-1}\right)\right.
\end{aligned}
$$

From (4) we obtain
(5) $\varphi_{2}^{2}=\varphi_{3}^{3}=\varphi_{7}^{7}=\varphi_{2} \varphi_{3} \varphi_{7}=\left(\varphi_{7} \varphi_{3} \varphi_{2}\right)^{4}=1$
in $\mathrm{Out}^{+}\left(\pi_{1}(X)\right)$. Since (5) is the presentation of

