McKay Correspondence and Hilbert Schemes*)

By Yukari ITO^{**)} and Iku NAKAMURA^{***)}

(Communicated by Heisuke HIRONAKA, M. J. A., Sept. 12, 1996)

Introduction. A particular case in the superstring theory where a finite group G acts upon the target Calabi-Yau manifold M in the theory seems to attract both physicists' and mathematician's attention from various viewpoints. In order to obtain a correct conjectural formula of the Euler number of a smooth resolution of the quotient space M/G, physicists were led to define the following orbifold Euler characteristic [2], [3]

$$\chi(M, G) = \frac{1}{|G|} \sum_{gh=hg} \chi(M^{\langle g,h \rangle}),$$

where the summation runs over all the pairs g, h of commuting elements of G, and $M^{\langle g,h\rangle}$ denotes the subset of M of all the points fixed by both of g and h. Then a conjecture of Vafa [2], [3] can be stated in mathematical terms as follows.

Vafa's formula-conjecture. If a complex manifold M has trivial canonical bundle and if M/Ghas a (nonsingular) resolution of singularities $\widetilde{M/G}$ with trivial canonical bundle, then we have $\chi(\widetilde{M/G}) = \chi(M, G)$.

In the special case where $M = A^n$ an *n*dimensional affine space, $\chi(M, G)$ turns out to be the number of conjugacy classes, or equivalently the number of equivalence classes of irreducible *G*-modules. If n = 2, then the formula is therefore a corollary to the classical McKay correspondence between the set of exceptional irreducible divisors and the set of equivalence classes of irreducible *G*-modules [13].

If n = 3, then the existence of the above resolution as well as Vafa's formulae is known by the efforts of mathematicians [14], [17], [12], [18], [7], [8], [9], [19]. Except in these cases Vafa's

formula is known to be true only in a few cases [6], for instance the case where G is a symmetry group S_m of m letters for n = 2m an arbitrary even integer [5] [15]. In this case $M/G = \text{Symm}^m(A^2)$ and $\widetilde{M/G} = \text{Hilb}^m(A^2)$ as we will see soon. A generalization of the classical McKay correspondence to an arbitrary n

is also known as an Ito-Reid (bijective) correspondence between the set of irreducible exceptional divisors in $\widetilde{M/G}$ and the set of certain conjugacy classes called junior ones [11].

In the present article we will report an interesting return-path from the case where S_n acts on A^{2n} to the two dimensional case with a different G. The analysis of the case leads us to a natural explanation for the classical McKay correspondence mentioned above. We will explain this more precisely in what follows.

Let $\operatorname{Symm}^n(A^2) (\simeq \operatorname{Chow}^n(A^2))$ be the *n*-th symmetric product of A^2 , that is by definition, the quotient of *n*-copies A^{2n} of A^2 by the natural action of the symmetry group S_n of *n* letters. Let $\operatorname{Hilb}^n(A^2)$ be the Hilbert scheme of A^2 parametrizing all the 0-dimensional subschemes of length *n*. By [1] [4] $\operatorname{Hilb}^n(A^2)$ is a smooth resolution of $\operatorname{Symm}^n(A^2)$ with a holomorphic symplectic structure and trivial canonical bundle.

Let G be an arbitrary finite subgroup of SL(2, C). The group G operates on A^2 so that it operates upon both $\operatorname{Hilb}^{n}(\boldsymbol{A}^{2})$ and $\operatorname{Symm}^{n}(\boldsymbol{A}^{2})$ canonically. Now we consider the particular case where n is equal to the order of G. Then it is easy to see that the G-fixed point set $\operatorname{Symm}^{n}(A^{2})^{G}$ in $\operatorname{Symm}^{n}(A^{2})$ is isomorphic to the quotient space A^2/G . The G-fixed point set $\operatorname{Hilb}^{n}(A^{2})^{G}$ in $\operatorname{Hilb}^{n}(A^{2})$ is always nonsingular, but can be disconnected and not equidimensional. There is however a unique irreducible component of Hilb^{*n*}(A^2)^{*G*} dominating Symm^{*n*}(A^2)^{*G*}, which we denote by $\operatorname{Hilb}^{G}(A^{2})$. $\operatorname{Hilb}^{G}(A^{2})$ is roughly speak. ing the Hilbert scheme parametrising all the *G*-orbits of length |G|. Since Hilb^{*G*}(A^2) inherits а holomorphic symplectic structure from

^{*)} The first author is partially supported by JSPS, the Fûjukai Foundation and Japan Association for Mathematical Sciences. The second author is partially supported by the Grant-in-aid (No. 06452001) for Scientific Research, the Ministry of Education.

^{**)} Department of Mathematics, Tokyo Metropolitan University.

^{***)} Department of Mathematics, Hokkaido University.