McKay Correspondence and Hilbert Schemes*)

By Yukari ITO**) and Iku NAKAMURA ***)

(Communicated by Heisuke HironAKA, M. J. A., Sept. 12, 1996)

Introduction. A particular case in the superstring theory where a finite group G acts upon the target Calabi-Yau manifold M in the theory seems to attract both physicists' and mathematician's attention from various viewpoints. In order to obtain a correct conjectural formula of the Euler number of a smooth resolution of the quotient space M / G, physicists were led to define the following orbifold Euler characteristic [2], [3]

$$
\chi(M, G)=\frac{1}{|G|} \sum_{g h=h g} \chi\left(M^{\langle g, h\rangle}\right)
$$

where the summation runs over all the pairs g, h of commuting elements of G, and $M^{\langle g, h\rangle}$ denotes the subset of M of all the points fixed by both of g and h. Then a conjecture of Vafa [2], [3] can be stated in mathematical terms as follows.

Vafa's formula-conjecture. If a complex manifold M has trivial canonical bundle and if M / G has a (nonsingular) resolution of singularities $\widetilde{M / G}$ with trivial canonical bundle, then we have $\chi(\widetilde{M / G})=\chi(M, G)$.

In the special case where $M=\boldsymbol{A}^{n}$ an n dimensional affine space, $\chi(M, G)$ turns out to be the number of conjugacy classes, or equivalently the number of equivalence classes of irreducible G-modules. If $n=2$, then the formula is therefore a corollary to the classical McKay correspondence between the set of exceptional irreducible divisors and the set of equivalence classes of irreducible G-modules [13].

If $n=3$, then the existence of the above resolution as well as Vafa's formulae is known by the efforts of mathematicians [14], [17], [12], [18], [7], [8], [9], [19]. Except in these cases Vafa's

[^0]formula is known to be true only in a few cases [6], for instance the case where G is a symmetry group S_{m} of m letters for $n=2 m$ an arbitrary even integer [5] [15]. In this case $M / G=$ $\operatorname{Symm}^{m}\left(\boldsymbol{A}^{2}\right)$ and $\overline{M / G}=\operatorname{Hilb}^{m}\left(\boldsymbol{A}^{2}\right)$ as we will see soon. A generalization of the classical McKay correspondence to an arbitrary n
is also known as an Ito-Reid (bijective) correspondence between the set of irreducible exceptional divisors in $\widetilde{M / G}$ and the set of certain conjugacy classes called junior ones [11].

In the present article we will report an interesting return-path from the case where S_{n} acts on $\boldsymbol{A}^{2 n}$ to the two dimensional case with a different G. The analysis of the case leads us to a natural explanation for the classical McKay correspondence mentioned above. We will explain this more precisely in what follows.

Let $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)\left(\simeq \operatorname{Chow}^{n}\left(\boldsymbol{A}^{2}\right)\right)$ be the n-th symmetric product of \boldsymbol{A}^{2}, that is by definition, the quotient of n-copies $\boldsymbol{A}^{2 n}$ of \boldsymbol{A}^{2} by the natural action of the symmetry group S_{n} of n letters. Let $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)$ be the Hilbert scheme of \boldsymbol{A}^{2} parametrizing all the 0 -dimensional subschemes of length n. By [1] [4] $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)$ is a smooth resolution of $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)$ with a holomorphic symplectic structure and trivial canonical bundle.

Let G be an arbitrary finite subgroup of $S L(2, \boldsymbol{C})$. The group G operates on \boldsymbol{A}^{2} so that it operates upon both $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)$ and $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)$ canonically. Now we consider the particular case where n is equal to the order of G. Then it is easy to see that the G-fixed point set $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)^{G}$ in $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)$ is isomorphic to the quotient space \boldsymbol{A}^{2} / G. The G-fixed point set $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)^{G}$ in $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)$ is always nonsingular, but can be disconnected and not equidimensional. There is however a unique irreducible component of $\operatorname{Hilb}^{n}\left(\boldsymbol{A}^{2}\right)^{G}$ dominating $\operatorname{Symm}^{n}\left(\boldsymbol{A}^{2}\right)^{G}$, which we denote by $\operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right) . \operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right)$ is roughly speaking the Hilbert scheme parametrising all the G-orbits of length $|G|$. Since $\operatorname{Hilb}^{G}\left(\boldsymbol{A}^{2}\right)$ inherits a holomorphic symplectic structure from

[^0]: *) The first author is partially supported by JSPS, the Fûjukai Foundation and Japan Association for Mathematical Sciences. The second author is partially supported by the Grant-in-aid (No. 06452001) for Scientific Research, the Ministry of Education.
 **) Department of Mathematics, Tokyo Metropolitan University.
 ***) Department of Mathematics, Hokkaido University.

