Elliptic Curves Related with Triangles

By Soonhak KWON
Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IyAnaga, M. J. A., June 11, 1996)

In a series of papers [4] [5] [6], T. Ono associated an elliptic curve E to a triangle with sides a, b and c as follows:

$$
E: y^{2}=x^{3}+P x^{2}+Q x,
$$

where
$P=\frac{1}{2}\left(a^{2}+b^{2}-c^{2}\right)$,
$Q=\frac{1}{16}\left(a^{4}+b^{4}+c^{4}-2 a^{2} b^{2}-2 b^{2} c^{2}-2 c^{2} a^{2}\right)$.
We assume $a b Q \neq 0$ so that this cubic is nonsingular. Then one verifies that the elliptic curve has a point $P_{0}=\left(x_{0}, y_{0}\right)=\left(\frac{c^{2}}{4}, \frac{c\left(b^{2}-a^{2}\right)}{8}\right)$. Assuming that a, b and c belong to an algebraic number field k, T. Ono obtained a certain condition under which the point P_{0} has an infinite order, and asked whether this condition can be improved (cf. [4,(I)]). In this paper, we assume that a, b and c belong to \boldsymbol{Q}. So the elliptic curve is defined over \boldsymbol{Q} and P_{0} is a rational point. In this case, we will get more precise condition so that P_{0} has an infinite order.

Following another setting of T. Ono [4,(II)], we define l, m and n as follows:

$$
l=\frac{b+a}{2}, m=\frac{b-a}{2}, n=\frac{c}{2} .
$$

Then, we have

$$
E: y^{2}=x\left(x+l^{2}-n^{2}\right)\left(x+m^{2}-n^{2}\right)
$$ and $P_{0}=\left(n^{2}, l m n\right)$.

Since rational multiples of l, m, n (etc. a, b, c) give isomorphic elliptic curves, we may assume that l, m, n are integers with (l, m, n) $=1$. Further we assume $\operatorname{lm} n \neq 0$, because in case $l m n=0 P_{0}$ becomes a 2 -torsion point. (i.e. we exclude isosceles triangles.)

Theorem. Let E be an elliptic curve

$$
y^{2}=x\left(x+l^{2}-n^{2}\right)\left(x+m^{2}-n^{2}\right),
$$

where l, m, n are nonzero integers for which $(l, m, n)=1, \quad\left(l^{2}-n^{2}\right)\left(m^{2}-n^{2}\right)\left(l^{2}-m^{2}\right) \neq 0$.
Suppose that E does not satisfy the following two conditions.
(i) There exist integers α, β with $(\alpha, \beta)=1$
such that

$$
l^{2}=\alpha^{2}(\alpha+\beta)^{2}, m^{2}=\beta^{2}(\alpha+\beta)^{2}, n^{2}=\alpha^{2} \beta^{2} .
$$

(ii) There is a relation among l, m, n as follows:

$$
\begin{gathered}
\frac{1}{n^{2}}=\frac{1}{l^{2}}+\frac{1}{m^{2}} \text { or } \frac{1}{l^{2}}=\frac{1}{m^{2}}+\frac{1}{n^{2}} \text { or } \\
\frac{1}{m^{2}}=\frac{1}{n^{2}}+\frac{1}{l^{2}} .
\end{gathered}
$$

Then, $P_{0}=\left(n^{2}, l m n\right) \in E(\boldsymbol{Q})$ is of infinite order. If E satisfies (i), P_{0} becomes a 3 -torsion point, and if E satisfies (ii), P_{0} becomes a 4 -torsion point.

Proof. In view of the equation of E there exists a point P in $E(\boldsymbol{Q})$ such that $2 P=P_{0}$ (cf. [2, Th. 4.2]). Suppose that P_{0} is a torsion point. Then by Mazur's classification of torsion subgroups of elliptic curves over \boldsymbol{Q}, we have

$$
P_{0}=2 P \in 2 \cdot(\boldsymbol{Z} / 2 \boldsymbol{Z} \oplus \boldsymbol{Z} / \nu \boldsymbol{Z}), \quad \nu=2,4,6,8
$$

From the above relation and since $\operatorname{lm} n \neq 0$, we easily conclude that P_{0} is either a 3 -torsion point or a 4 -torsion point. Now suppose that P_{0} is a point of order 3, then the torsion subgroup of E is isomorphic to $\boldsymbol{Z} / 2 \boldsymbol{Z} \oplus \boldsymbol{Z} / 6 \boldsymbol{Z}$ and the theorem of K. Ono [3] implies that there exist a positive integer d and relatively prime integers α, β such that
$l^{2}-n^{2}=d^{2} \alpha^{3}(\alpha+2 \beta), \quad m^{2}-n^{2}=d^{2} \beta^{3}(\beta+2 \alpha)$. Since $\left(d^{2} \alpha^{2} \beta^{2}, \pm d^{3} \alpha^{2} \beta^{2}(\alpha+\beta)^{2}\right)$ are points of order 3 (as a simple computation shows) and these are the only 3 -torsion points in \boldsymbol{Q}, we have $n^{2}=d^{2} \alpha^{2} \beta^{2}$. Thus we get

$$
\begin{gathered}
l^{2}=n^{2}+d^{2} \alpha^{3}(\alpha+2 \beta)=d^{2} \alpha^{2}(\alpha+\beta)^{2} \\
m^{2}=n^{2}+d^{2} \alpha^{3}(\beta+2 \alpha)=d^{2} \beta^{2}(\alpha+\beta)^{2}
\end{gathered}
$$

Since we assumed $(l, m, n)=1$, we get $d=1$, and

$$
l^{2}=\alpha^{2}(\alpha+\beta)^{2}, m^{2}=\beta^{2}(\alpha+\beta)^{2}, n^{2}=\alpha^{2} \beta^{2}
$$

where α and β are relatively prime integers. Conversely if l, m, n satisfy above conditions, then P_{0} must be a 3 -torsion point. Next we suppose that P_{0} is a 4 -torsion point. Then, since $2 P_{0}$ is a point of order 2, we have

$$
2 P_{0}=(0,0), \text { or }\left(n^{2}-l^{2}, 0\right), \text { or }\left(n^{2}-m^{2}, 0\right) .
$$

Note that, if $\left(x_{0}, y_{0}\right)$ is a point of $y^{2}=x(x+M)$.

