Orbits in the Flag Variety and Images of the Moment Map for $U(p, q)$

By Atsuko Yamamoto
Graduate School of Mathematical Sciences, The University of Tokyo
(Communicated by Shokichi Iyanaga, M. J. A., June 11, 1996)

1. Introduction. Let $G_{\boldsymbol{R}}$ be a real classical group. For simplicity, we consider only the case that Cartan subgroups of $G_{\boldsymbol{R}}$ are connected. It is known that there is a correspondence between irreducible representation of $G_{\boldsymbol{R}}$ with a given infinitesimal character and the orbits of a flag of the complexification of $G_{\boldsymbol{R}}$ on which the complexification K of a maximal compact subgroup of $G_{\boldsymbol{R}}$ operates (for example [7]). Essentially, a parametrization of the orbits is given by Matsuki-Oshima [5]. In this paper, we will consider the case $G_{\boldsymbol{R}}$ $=U(p, q)$ and get an algorithm which gives representatives of orbits for the parametrization and images of the moment map of the conormal bundles of orbits. For a closed orbit, the image is the associated variety of a representation [1]. By the method in this paper, we get representatives from parameters directly. The proof will appear in another paper. Garfinkle gave another algorithm in [3]. By her algorithm we can also get signed Young diagram from a parameter of K-orbits in the flag variety. It remains to examine how two algorithms agree.

The argument in this paper can be applied to the case $G_{\boldsymbol{R}}=S p(p, q)$, etc. The concerning results will appear elsewhere.

Notation 1.1. Let \boldsymbol{N} denote the set of positive integers; $\boldsymbol{N}=\{1,2, \ldots\}$. For $n \in \boldsymbol{N}$, let an $n \times n$ matrix $E_{i j}(1 \leq i, j \leq n)$ denote the matrix unit which has 1 for the (i, j)-entry and 0 for other entries. Let an n-column vector e_{i} be the vector which has 1 for the i-th entry and 0 for other entries. For a matrix A, let $A_{s t}$ be the (s, t)-entry of A. Let $\operatorname{Mat}(m, n)$ be the set of $m \times n$-matrices over C. Let $I_{n} \in \operatorname{Mat}(n, n)$ be the identity matrix. For an $A \in \operatorname{Mat}(n, n)$ and a subset $\{i(1), i(2), \ldots, i(m)\}$ of $\{1, \ldots, n\}$, we denote by $A_{(i(1), i(2), \ldots, i(m))}$ an $m \times m$-matrix whose (s, t)-entry is $A_{i(s) i(t)}$. Let $\# S$ denote cardinality of the finite set S. For m vectors $\left\{g_{1}, \ldots, g_{m} \mid g_{i}\right.$ $\left.\in \boldsymbol{C}^{n}\right\}(m<n)$ let $\left\langle g_{1}, \ldots, g_{m}\right\rangle$ be vector space
spanned by $\left\{g_{1}, \ldots, g_{m}\right\}$. Let \mathbb{S}_{n} be the set of permutations of $\{1, \ldots, n\}$.
2. A symbolic parametrization of K-orbits. Let $G_{\boldsymbol{R}}$ be a real classical Lie group with Lie algebra $\mathfrak{g}_{\boldsymbol{R}}, G$ the complexification of $G_{\boldsymbol{R}}, \theta$ a Cartan involution of $\mathfrak{g}_{\boldsymbol{R}}$. Let $\mathfrak{g}_{\boldsymbol{R}}=\mathfrak{f}_{\boldsymbol{R}}+\mathfrak{p}_{\boldsymbol{R}}$ be the Cartan decomposition corresponding to θ, the complexification of $\boldsymbol{E}_{\boldsymbol{R}}, K$ the analytic subgroup of G for \mathfrak{E}, and B a Borel subgroup of G. Although we restrict ourselves to the case $G_{\boldsymbol{R}}=$ $U(p, q)$ in the main body of the paper, a preliminary discussion holds for an arbitrary linear connected reductive Lie group $\boldsymbol{G}_{\boldsymbol{R}}$.

In this section we recall a symbolic parametrization of K-orbits in X.

Let $n=p+q$. We realize the indefinite unitary group $G_{\boldsymbol{R}}=U(p, q)$ as the group of matrices g in $G L(n, C)$ which leave invariant the Hermitian from of the signature (p, q)

$$
x_{1} \overline{x_{1}}+\cdots+x_{p} \overline{x_{p}}-x_{p+1} \overline{x_{p+1}}-\cdots-x_{n} \overline{x_{n}}
$$ i.e.,

$$
\begin{aligned}
U(p, q)= & \{g \in G L(n, C) \mid \\
& \left.{ }^{t} g\left(\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right) \bar{g}=\left(\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right)\right\}
\end{aligned}
$$

We fix a Cartan involution θ of $G_{\boldsymbol{R}}$:

$$
\theta: x \mapsto\left(\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right) x\left(\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right)
$$

Definition 2.1 (Clan) (see [5]). An indication for $U(p, q)$ is an ordered set $\left(c_{1} \ldots c_{n}\right)$ of n symbols satisfying the following four conditions.

1. For every $1 \leq i \leq n, c_{i}$ is + , , or an element of \boldsymbol{N}.
2. If $c_{i} \in \boldsymbol{N}$, then there exists a unique $j \neq i$ with $c_{j}=c_{i}$, i.e.,
$\#\left\{i \mid c_{i}=a\right\}=0$ or 2 for any $a \in N$.
3. The difference between numbers of + and - in an indication $\left(c_{1} \ldots c_{n}\right)$ coincides with the difference of signatures of the Hermitian form defining the group $G_{\boldsymbol{R}}$:
