Recurrence and Transience of Operator Semi-Stable Processes

By Gyeong Suck CHOI and Ken-iti SATO

Nagova University (Communicated by Kiyosi ITÔ, M. J. A., May 12, 1995)

1. Introduction and results. Operator semistable distributions on the d-dimensional Euclidean space \mathbf{R}^{d} constitute a class of infinitely divisible distributions. They are studied by R. Jajte [4], [5], W. Krakowiak [6], A. Luczak [9], V. Chorny [2] and others. We call Lévy processes on \mathbf{R}^{d} having operator semi-stable distributions at each time operator semi-stable processes. Here we mean by Lévy processes stochastically continuous processes with stationary independent increments starting at the origin. In this note we determine recurrence and transience of all non-degenerate operator semi-stable processes.

A distribution μ on \mathbf{R}^{d} is called *operator* semi-stable if there exist a sequence $\{Y_n : n =$ $1,2,\cdots$ of i.i.d. (= independent identically distributed) random variables on \mathbf{R}^{d} , a strictly increasing sequence of positive integers k_n satisfying $k_{n+1}/k_n \rightarrow r$ with some $r \in [1, \infty)$, and sequences of invertible linear operators A_n acting in \mathbf{R}^d and vectors b_n in \mathbf{R}^d such that the distribution of

(1.1) $A_n(Y_1 + Y_2 + \dots + Y_{k_n}) + b_n$ weakly converges to μ as $n \to \infty$. R. Jajte [4] shows that if μ is full (that is, the support of μ is not contained in any (d-1)-dimensional hyperplane in \mathbf{R}^{d}), then a necessary and sufficient condition for μ to be operator semi-stable is that it is infinitely divisible and there exist a number $a \in (0, 1)$, a vector $b \in \mathbf{R}^{d}$, and an invertible linear operator A such that

(1.2)
$$\mu^a = A\mu * \delta_b$$

Here μ^a is the *a*-th convolution power of μ , $A\mu$ is the distribution defined by $A\mu(E) = \mu(A^{-1}E)$, and δ_b is the delta distribution at b. Using the relation (1.2), A. Luczak [9] and V. Chorny [2] describe the Lévy measure of μ .

In one dimension $(d = 1) A_n$ and A are simply multiplication by non-zero constants. P. Lévy [8], p. 204, introduced in one dimension the notion of semi-stability, which corresponded to the case b = 0 in (1.2), and determined their characteristic functions. R. Shimizu[13] made a study of relations of Lévy's semi-stability with limit theorems for sequences of i.i.d. random variables. V. M. Kruglov [7] studied the class of onedimensional distributions which are limit distributions of $c_n(Y_1 + Y_2 + \cdots + Y_{k_n}) + b_n$ for i.i.d. random variables $\{Y_n\}$ with $c_n > 0$, b_n real, and $k_{n+1}/k_n \rightarrow r \in [1, \infty)$. In general finite dimensions, if $k_n = n$ and A_n is a positive constant multiple of the identity operator for each n, then the definition above of operator semistability gives the class of stable distributions on \mathbf{R}^{d} . If $k_{n} = n$, then the definition above gives the class of operator stable distributions, which were first introduced by M. Sharpe [12]. On the other hand, if A_n is a non-zero constant multiple of the identity operator for each n, then the limit distributions are called semi-stable. The class of operator semi-stable distributions extends these classes. The corresponding Lévy processes are called stable processes, operator stable processes, semi-stable processes, and operator semi-stable processes, respectively. Classification of stable processes into recurrent and transient is well-known. It is extended in [1] to semi-stable processes. Operator stable processes are discussed in [10], but their recurrence and transience are not treated.

Our result is as follows. We say that a Lévy process is non-degenerate if its distribution at each t > 0 is full.

Theorem. Let $\{X_i\}$ be a non-degenerate operator semi-stable process on the plane \mathbf{R}^2 . If $\{X_i\}$ is not Gaussian, then it is transient.

Note that, for d > 3, all non-degenerate Lévy processes on \mathbf{R}^{d} are transient (see [11] for proof). Also note that operator semi-stable processes on the line \boldsymbol{R}^1 are semi-stable processes in the sense of [1], and their classification is obtained in [1]. A Gaussian Lévy process on the plane \mathbf{R}^2 is recurrent or transient according as its mean is zero or non-zero, respectively. There-