Computation of the Modular Equation

By Hideji ITO*)
Department of Mathematics, College of Education, Akita University
(Communicated by Shokichi IYANAGA, M. J. A., March 13, 1995)

1. Introduction. To each rational prime p, the basic elliptic modular function $j(z)$ gives rise to the modular equation

$$
\Phi_{p}(X, j)=0
$$

To be more explicit, the p-th modular polynomial $\Phi_{p}(X, j)$ is defined by

$$
\Phi_{p}(X, j)=(X-j(p z)) \prod_{i=0}^{p-1}\left(X-j\left(\frac{z+i}{p}\right)\right)
$$

It is a polynomial in X and $j(z)$ with rational integer coefficients. These coefficients are, in general, gigantic numbers for larger p and the explicit values of them are hard to determine. Classically, H. J. S. Smith computed them for $p=2,3$ (1878, 1879), Berwick [2] for $p=5$ (1916). In recent years, Herrmann [4] published the results up to $p=7$ (1975), and Kaltofen-Yui [5] gave the results for $p=11$ (1984). In a letter to the author dated December 3, 1992, Professor Yui informed us that the explicit forms of $\Phi_{p}(X, j)$ are known up to $p=31$.

The purpose of this note is to give a simple new algorithm to compute $\Phi_{p}(X, j)$. By using it, we have obtained explicit forms of them up to $p=53$. Also, we have discovered some remarkable properties of the coefficients of $\Phi_{p}(X, j)$, which may have some clues in the investigation of the so called Moonshine phenomenon of the Monster simple group.

We use Mathematica ver. 2 on Sony NEWS 3860 (a work station; 20 MIPS with 16 MB RAM memory).
2. Preliminaries. Our approach begins with the following well-known proposition:

Let $f(z)$ be a $S L_{2}(\boldsymbol{Z})$-modular function that is holomorhic on the upper half plane and let its q-expansion be

$$
\begin{array}{r}
f(z)=a_{-n} q^{-n}+a_{-(n-1)} q^{-(n-1)}+\cdots \\
\left(a_{i} \in \boldsymbol{Z}, q=e^{2 \pi \sqrt{-1} z}\right)
\end{array}
$$

[^0]Then $f(z)$ is a polynomial $F(j(z))$ in $j(z)$ with coefficients in \boldsymbol{Z}.

It is easy to give an algorithm to get $F(j(z)$) by recursive procedure. (See Lang [9], p. 54.)

We can rewrite the modular polynomial as follows:

$$
\begin{aligned}
& \Phi_{p}(X, j)=X^{p+1}+\sum_{i=1}^{p+1}(-1)^{i} s_{i}(j) X^{p-i+1} \\
& =X^{p+1}+j^{p+1}+\sum_{n, m=0}^{p} a_{n m} X^{n} j^{m} \quad\left(a_{n m} \in \boldsymbol{Z}\right)
\end{aligned}
$$

Here we mean by $s_{i}(j)$ the i-th fundamental symmetric function in

$$
j(p z), j\left(\frac{z}{p}\right), j\left(\frac{z+1}{p}\right), \ldots, j\left(\frac{z+p-1}{p}\right)
$$

which is evidently $S L_{2}(\boldsymbol{Z})$-modular and holomorphic on the upper half plane. So we have

$$
s_{i}(j)=S_{i}(j)
$$

for some polynomial $S_{i}(j)$ in $j(z)$ (with coefficients in \boldsymbol{Z}). We have to obtain the explicit forms of the $S_{i}(j)$. These matters are, of course, well known. But, in general, it is quite difficult to get the q-expansions of the $s_{i}(j)$ explicitly. (Except for $i=1$. In this case $s_{1}(j)=j(p z)+j(z / p)+$ $\cdots+j((z+p-1) / p)=q^{-p}+744(p+1)+$)

Herrmann [4] took the way of reducing q-expansions of the s_{k} modulo various primes and using an estimate of the coefficients plus the Chinese remainder theorem he recovered the values.

Kaltofen-Yui [5] took a different view point. They started with the equation $\Phi_{p}(j(p z), j(z))=$ 0 . Substituting the q-expansions of $j(z)$ and $j(p z)$, they got a system of linear equations in the $a_{n m}$, which has some special features suitable for solving.
3. Our method. The key point of our method lies in the use of power sums and the Newton formula applying for $j(z / p), j((z+1) /$ $p), \ldots, j((z+p-1) / p)$ (note that we treat $j(p z)$ separately).

[^0]: *) Partially supported by Grant-in-Aid for Scientific Research (No. 05640245), The Ministry of Education, Science and Culture, Japan.

