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1. Introduction. In this paper we con- L V (-% oo,/ F(Ko, ,).
tinue the investigation of the restriction of irre- Suppose X is a K-module (possibly, of infi-
ducible unitary representations of real reductive nite dimension)which carries an algebraic action
groups, with emphasis on the discrete decomposa- of K. The K0-multiplicity function of X is given
bility. We recall that a representation r of a by
reductive Lie group G on a Hilbert space V is m mx" L fl C--* N U oo,
G-admissible if (, V) is decomposed into a dis- m() dim Homo(F(Ko, ), X).
crete Hilbert direct sum with finite multiplicities The asymptotic K-support T(X) C was intro-
of irreducible representations of G. The same ter- duced in [3] as follows"
minology is used for a (fl, K)-module on a pre- S(X) "= {, L f) C’mx(,) 0},
Hilbert space, if its completion is G-admissible. T(X) {, C" V f S(X) is not relatively

Let H be a reductive subgroup of a real re- compact for any open cone Vcontaining }.
ductive Lie group G, and (r, V) an irreducible Hereafter we assume a growth condition on
unitary representation of G. The restriction (rClH, mx there are constants A, R > 0 such that
V) is decomposed uniquely into irreducible unit- (2.1) mx(/) A exp(R[/ [) for any/ L N (.
ary representations of H, which may involve a This condition assures that the character of the
continuous spectrum if H is noncompact. In representation X is a hyperfunction on K, whose
[5],[6], we have posed a problem to single out the singularity spectrum we can estimate in terms of
triplet (G, H, re)such that the restriction of T(X).
(rClH, V)is H-admissible, together with some ap- Suppose H is a closed subgroup of K. Let
plication to harmonic analysis on homogeneous prK_.H t*-- D* be the projection dual to the in-
spaces. The purpose of this paper is to give a clusion of Lie algebras t f. Put D +/-

"=

new insight of such a triplet (G, H, r)from Ker(prK_m’t*--. t*). We set
view points of algebraic analysis. In particular, (2.2) ((t) ( f3 Ad*(K)t +/- c v/- 1 (t)*.
we will give a sufficient condition on the triplet Note that () {0} and ((0) (.
(G, H, r) for the H-admissible restriction as a Theorem 2.3. Let X be a K-module saris-
generalization of [5],[6] to arbitrary H, and also fying (2.1). If a closed subgroup H of K satisfies
present an obstruction for the H-admissible res- T(X) N (D) {0},
triction, then the restriction XIH is H-admissible.

2. A sufficient condition for discrete de- Now, let us apply Theorem (2.3) to some
eomposability. Let K be a compact Lie group. We standard (, K)-modules. Suppose that G is a
write t0 for the Lie algebra of K, and for its real reductive linear Lie group and that K is a
complexification. Analogous notation is used for maximal compact subgroup of G. A dominant ele-

cother groups. Take a Cartan subalgebra o of 0. rnent a v 1 o defines a 0-stable parabolic
The weight lattice L in v/- l(t)* is the additive subalgebra q 4- u, where [, u are the sum of
subgroup of v/- 1 (t)* consisting of differentials eigenspaces of ad(a) with 0, positive eigenvalues,
of the weights of finite dimensional representa- respectively. Let L be the centralizer of a in G.
tions of K. Let ’ c v/- 1 (t)* be a dominant Zuckerman introduced the cohomological para-
Weyl chamber. We write K0 for the identity com- bolic induction Yq (j .IV), which is a
ponent of K, and 00 for the unitary dual of K0. covariant functor from the category of metaplectic
The Cartan-Weyl theory of finite dimensional ([, (L VI K) ) -modules to that of (fi, K)-modules,
representations establishes a bijection" as a generalization of the Borel-Weil-Bott con-


