A Note on the Capitulation in Z_p -extensions

By Manabu OZAKI

Department of Mathematics, School of Science and Engineering, Waseda University (Communicated by Shokichi IYANAGA, M. J. A., Nov. 13, 1995)

1. Introduction. Let K be a number field, namely, a finite extension field over the field of rational numbers. Let p be a prime number, and K_{∞}/K a \mathbb{Z}_p -extension with Galois group Γ . Denote by K_n the *n*-th layer of K_{∞}/K . We write A_n for the p-Sylow subgroup of the ideal class group of K_n , and $j_{n,m}$ for the map from A_n to A_m induced from the inclusion $K_n \subseteq K_m$ for $m \ge n$ ≥ 0 . Let $A_{\infty} = \lim_{n \to \infty} A_n$, where the inductive limit is taken with respect to $j_{n,m}$, and let $j_{n,\infty}$ be the natural map from A_n to A_{∞} . We denote by $\lambda(K_{\infty}/K)$, $\mu(K_{\infty}/K)$ the Iwasawa λ , μ invariant, respectively, of K_{∞}/K .

In the present paper, we shall prove the following:

Theorem. Let notations be as above. If we assume that all primes of K which ramify in K_{∞} are totally ramified in K_{∞} , then

$$\begin{split} \lambda(K_{\infty}/K) &= \mu(K_{\infty}/K) = 0 \Leftrightarrow Ker(N_{1,0}:A_1 \to A_0) \\ &\subseteq Ker(j_{1,\infty}:A_1 \to A_{\infty}), \end{split}$$

where $N_{1,0}$ stands for the norm map from A_1 to A_0 .

This theorem is in analogy to the following theorem due to Greenberg [1, Theorem 1], though our proof is based on a method different from [1].

Theorem (Greenberg). Let K be a totally real number field, and K_{∞}/K a \mathbb{Z}_{p} -extension. If we assume that there is only one prime in K above p, which is totally ramified in K_{∞} , then

 $\lambda(K_{\infty}/K) = \mu(K_{\infty}/K) = 0 \Leftrightarrow Ker(j_{0,\infty}: A_0 \to A_{\infty}) = A_0.$ 2. Proof of Theorem. We fix a topological generator γ of Γ . Put $\Lambda = \mathbb{Z}_p[[\Gamma]]$ and $\nu_{n,m} = \frac{\gamma^{p^m} - 1}{\gamma^{p^n} - 1} \in \Lambda$ for $m \ge n \ge 0$. Let L_{∞}/K_{∞} be the maximal unramified pro-p abelian extension, and let X be its Galois group. Put $Y = Gal(L_{\infty}/K_{\infty}L_0)$, where L_0 is the Hilbert p-class field of K. Then X is a finitely generated torsion Λ -module, and the Artin map induces the isomorphism $A_n \simeq X/\nu_{0,n}Y$ for all $n \ge 0$ (cf. [2. Theorem 6]). So we will identify $X/\nu_{0,n}Y$ with A_n .

We first prove the following:

Proposition. $Ker(j_{n,\infty}: A_n \rightarrow A_\infty) = Im(X_{finite})$

 $\rightarrow X/\nu_{0,n}Y$ for all $n \ge 0$, where X_{finite} denotes the maximal finite Λ -submodule of X.

Proof. Since X_{finite} is finite, we see that $\nu_{n,m}X_{finite} = 0$ for some $m \ge n$. Observing the following commutative diagram (cf. [2, Theorem 7]):

(1)
$$\begin{array}{ccc} A_m & \stackrel{\sim}{\longrightarrow} & X/\nu_{0,m}Y \\ {}^{j_{n,m}}\uparrow & \uparrow^{\nu_{n,m}} \\ A_n & \stackrel{\sim}{\longrightarrow} & X/\nu_{0,n}Y, \end{array}$$

we have

 $Im(X_{finite} \to X/\nu_{0,n}Y) \subseteq Ker(j_{n,\infty}:A_n \to A_{\infty}).$ Conversely, let $x \mod .\nu_{0,n}Y \in X/\nu_{0,n}Y$ be any element in $Ker(j_{n,\infty}:A_n \to A_{\infty}).$ It follows from (1) that $\nu_{n,m}x \in \nu_{0,m}Y$ for some $m \ge n$. Hence $\nu_{n,m}x$ $= \nu_{0,m}y$ for some $y \in Y$, that is

(2) $\nu_{n,m}(x - \nu_{0,n}y) = 0.$

 X/X_{finite} is embedded in the Λ -module $\bigoplus_{i=1}^{r} \Lambda/f_{i}^{e_{i}}\Lambda$ with finite cokernel, where $f_{i} \in \Lambda$ is a prime element. Since $X/\nu_{n,m}X$ is finite, $\prod_{i=1}^{r}f_{i}^{e_{i}}$ is prime to $\nu_{n,m}$. So we see that the multiplicationby- $\nu_{n,m}$ map $\nu_{n,m}: X/X_{finite} \to X/X_{finite}$ is injective. Therefore we have $x - \nu_{0,n}y \in X_{finite}$ from (2). So we obtain $x \mod .\nu_{0,n}Y \in Im(X_{finite} \to X/\nu_{0,n}Y)$.

Corollary. $Ker(j_{n,\infty}: A_n \to A_\infty) \neq 0$ for some $n \ge 0 \Leftrightarrow X_{finite} \neq 0$

Proof. (\Rightarrow) part is obvious by Proposition. We assume that $X_{finite} \neq 0$. It follows from $\bigcap_{n\geq 0} \nu_{0,n}Y = 0$ that $X_{finite} \not\subseteq \nu_{0,n}Y$ for some $n \geq 0$. Therefore we find that $Ker(j_{n,\infty}: A_n \to A_\infty) \neq 0$ by Proposition.

Proof of Theorem. (\Rightarrow) part is easy (cf. [1, Proposition 2]). We assume that $Ker(N_{1,0}:A_1 \rightarrow A_0) \subseteq Ker(j_{1,\infty}:A_1 \rightarrow A_\infty)$. From the commutative diagram (cf. [2, Theorem 7])

(3)
$$\begin{array}{cccc} A_{1} & \xrightarrow{\sim} & X/\nu_{0,1}Y \\ & & & \downarrow \text{ brojection} \\ & & A_{0} & \xrightarrow{\sim} & X/Y, \end{array}$$

we see that $Ker(N_{1,0}: A_1 \rightarrow A_0) = Y/\nu_{0,1}Y$. It follows from the assumption and Proposition that