A Remark on Integral Representations Associated with *p*-adic Field Extensions

By Shuji YAMAGATA

Department of Mathematical Sciences, Tokyo Denki University (Communicated by Shokichi IYANAGA, M. J. A., Nov. 13, 1995)

Let K be a local field of characteristic 0 with algebraically closed residue field of characteristic p > 0. In this paper, an extension of K means an extension of K contained in some fixed algebraic closure \overline{K} of K. Let K_{∞}/K be a Z_{p} extension with Galois group $\Gamma = \text{Gal}(K_{\infty}/K)$ ($\cong \mathbb{Z}_p$). Let $\Gamma_n = \Gamma^{p^n}$ and K_n the subfield of K_{∞} fixed by Γ_n . Denote by $\mathcal{O}(F)$ the ring of integers of an extension F/K. Especially put $\mathcal{O}_n =$ $\mathcal{O}(K_n)$ and $\mathcal{O} = \mathcal{O}(K)$. For a product R of extensions of $K, \mathcal{O}(R)$ denotes the product of the rings of integers of the factors i.e. the unique maximal order of R. For two finite extensions F/K and F'/K, let F_i , $i = 1, 2, \ldots, f$ be all the composite field's of the images of K-embeddings of F into \bar{K} (up to equivalence of proper embeddings of F above F' in the sense of [4])) with F'. Then we have $F \bigotimes_{\kappa} F' \cong \prod F_i$. Put $F_{\otimes m} = F$ $\bigotimes_{\kappa} K_{m}$

We attach, to any finite extension E/K, the \mathcal{O}_m -semi-linear representation $\mathcal{O}(E_{\otimes m})$ of Γ/Γ_m given by its Galois action on K_m . In [3] S. Sen proved (probably in collaboration with J-M. Fontaine): Let E/K and E'/K be two finite Galois p-extensions.E/K and E'/K are isomorphic if and only if, for some sufficiently large m, the \mathcal{O}_m -semi-linear representations of Γ/Γ_m on the additive groups $\mathcal{O}(E_{\otimes m})$ and $\mathcal{O}(E'_{\otimes m})$ are isomorphic. In [1], F. Destrempes generalized this theorem for two finite Galois extensions.

The purpose of this paper is to prove the following theorem:

Theorem (cf. Theorem 2 of [3] and Theorem 1 of [1]). Let E/K and E'/K be two finite extensions. Assume that, for some sufficiently large m (cf. Remark 1 of §2), the \mathcal{O}_m -semi-linear representations of Γ/Γ_m on the additive groups $\mathcal{O}(E_{\otimes m})$ and $\mathcal{O}(E'_{\otimes m})$ are isomorphic. Then the Galois closures of E/K and E'/K coincide and deg $E/K = \deg E'/K$.

The author would like to express his hearty

thanks to Professor Keiichi Komatsu for his advice and encouragements.

§1. Preliminaries. For a finite extension F/K, let π_F be a prime element of F and v_F the valuation of F normalized by $v_F(\pi_F) = 1$. Especially put $\pi_n = \pi_{K_n}$ and $v_n = v_{K_n}$.

The following proposition is a generalization of Proposition 6 of [3] and Proposition 6 of [1].

Proposition 1. Let E/K and E^*/K be two finite extensions. Then there is an integer *s*, independent of *m*, such that

 $\mathcal{O}(E_{\otimes m} \otimes_{K_m} E_{\otimes m}^*) / (\mathcal{O}(E_{\otimes m}) \otimes_{\mathcal{O}_m} \mathcal{O}(E_{\otimes m}^*))$ is killed by π_m^s . Here *s* depends only on one of the two extensions E/K and E^*/K .

Proof. Let F/K be a finite extension. We claim that, for sufficiently large m, $v_m(\delta(FK_m/K_m))$ has an upper bound which depends only on F/K, not on m. Here $\delta(FK_m/K_m)$ is the discriminant ideal of the extension FK_m/K_m . If F/K is a finite Galois p-extension, the assertion was proved in Lemma 1 of [1]. General case follows from it by considering the Galois closure and using transitivity of discriminant. Hence we have proved the proposition by Lemma 4 of [1].

The next elementary lemma is used in the following.

Lemma. Let E/K be a finite extension and F/K a finite Galois extension. Write $E \bigotimes_K F \cong \prod E_i$ as the product of the composite fields. Then deg E_i/K does not depend on *i*. Furthermore, if deg E/K and deg F/K are powers of *p*, so is deg E_i/K .

Proof. Write $E \cong K[x]/(f)$ with an irreducible monic polynomial $f \in K[x]$. We have $E \otimes_{K} F \cong F[x]/(f) \cong \prod F[x]/(f_{i})$ if we decompose f into the product $\prod f_{i}$ of irreducible monic polynomials in F[x] (cf. for example, Lemma 6, Chap. 2, §5.2 of [2]). As F/K is a Galois extension, f_{i} 's are conjugate under $\operatorname{Gal}(F/K)$ -action on the coefficients. Thus $\operatorname{deg} E_{i}/K = \operatorname{deg} f_{i}$ does not depend on i.