On the Generators of the Mapping Class Group of a 3-dimensional Handlebody

By Moto-o TAKAHASHI
Institute of Mathematics, University of Tsukuba
(Communicated by Shokichi IYANAGA M. J. A., Nov. 13, 1995)

Let V be a handlebody of genus $g(\geq 2)$ and let $T=\partial V$. Let $\mathcal{M}_{V}, \mathcal{M}_{T}$ be the mapping class groups of V, T, respectively. (For the definition of a mapping class group, see [3].) It is well known that \mathcal{M}_{T} is isomorphic to the outer automorphism group of $\pi_{1}(T)$.

We have the injection $\nu: \mathcal{M}_{V} \rightarrow \mathcal{M}_{T}$ by letting the restriction $f \mid T: T \rightarrow T$ correspond to each homeomorphism $f: V \rightarrow V$.

In this paper we seek the generators of $\nu\left(\mathcal{M}_{V}\right)\left(\subset \mathcal{M}_{T}\right)$ which are as simple as possible as the products of the generators defined by Lickorish in [4].

Let $\alpha_{i}, \beta_{i}(i=1, \cdots, g), \nu_{i}(i=1, \cdots, g-1)$ be the isotopy classes of the Dehn twists about the simple loops shown in the Fig. 1.

We shall prove the following theorem.

Fig. 1
Theorem. $\nu\left(\mathcal{M}_{V}\right)$ is generated by $\alpha_{1}, \beta_{1} \alpha_{1}^{2} \beta_{1}$, $\beta_{i} \alpha_{i} \gamma_{i} \beta_{i}, \beta_{i+1} \alpha_{i+1} \gamma_{i} \beta_{i+1}(i=1, \cdots, g-1)$.

Proof. Let $a_{i}, b_{i}(i=1, \cdots, g)$ be the generators of the fundamental group of the surface T as shown in the Fig. 2.

Fig. 2

$$
\left(\pi_{1}(T) \simeq\left\langle a_{i}, b_{i}(i=1, \cdots, g)\right| s_{1}^{-1} s_{2}^{-1} \cdots\right.
$$

$\left.s_{g}^{-1}=1\right\rangle$, where $\left.s_{i}=a_{i}^{-1} b_{i}^{-1} a_{i} b_{i}, i=1, \cdots, g.\right)$
By Suzuki [1], \mathcal{M}_{V} is generated by the isotopy classes of $\tau_{1}, \omega_{1}, \theta_{12}, \xi_{12}, \rho_{12}$ and ρ. The induced automorphisms of $\pi_{1}(T)$ are given by:
$\nu\left(\tau_{1}\right)\left\{\begin{array}{l}a_{1} \rightarrow b_{1}^{-1} a_{1} \\ a_{i} \rightarrow a_{i}(i=2, \cdots, g) \\ b_{i} \rightarrow b_{i}(i=1, \cdots, g),\end{array}\right.$
$\nu\left(\omega_{1}\right)\left\{\begin{array}{l}a_{1} \rightarrow a_{1}^{-1} s_{1}^{-1} \\ a_{i} \rightarrow a_{i}(i=2, \cdots, g) \\ b_{1} \rightarrow a_{1}^{-1} b_{1}^{-1} a_{1} \\ b_{i} \rightarrow b_{i}(i=2, \cdots, g)\end{array}\right.$
$\nu\left(\theta_{12}\right)\left\{\begin{array}{l}a_{1} \rightarrow a_{1} s_{2}^{-1} a_{1}^{-1} \\ a_{i} \rightarrow a_{i}(\mathrm{i}=2, \cdots, g) \\ b_{2} \rightarrow a_{2} b_{2} a_{1}^{-1} b_{1} a_{1} b_{2}^{-1} a_{2}^{-1} b_{2} \\ b_{i} \rightarrow b_{i}(i \neq 2)\end{array}\right.$
$\nu\left(\xi_{12}\right)\left\{\begin{array}{l}a_{1} \rightarrow b_{1} a_{1} b_{2}^{-1} s_{2} a_{1}^{-1} b_{1}^{-1} a_{1} \\ a_{2} \rightarrow a_{2} b_{2} a_{1}^{-1} b_{1}^{-1} a_{1} b_{2}^{-1} \\ a_{i} \rightarrow a_{i}(i=3, \cdots, g) \\ b_{i} \rightarrow b_{i}(i=1, \cdots, g),\end{array}\right.$
$\nu\left(\rho_{12}\right)\left\{\begin{array}{l}a_{1} \rightarrow s_{1}^{-1} a_{2} s_{1} \\ a_{2} \rightarrow a_{1} \\ a_{i} \rightarrow a_{i}(i=3, \cdots, g) \\ b_{1} \rightarrow s_{1}^{-1} b_{2} s_{1} \\ b_{2} \rightarrow b_{1} \\ b_{i} \rightarrow b_{i}(i=3, \cdots, g)\end{array}\right.$
$\nu(\rho)\left\{\begin{array}{l}a_{i} \rightarrow a_{i+1}(i=1, \cdots, g-1) \\ a_{g} \rightarrow a_{1} \\ b_{i} \rightarrow b_{i+1}(i=1, \cdots, g-1) \\ b_{g} \rightarrow b_{1}\end{array}\right.$
First we observe that each element stated in the theorem is actually an element of $\nu\left(\mathcal{M}_{V}\right)$. By [2], an element of \mathcal{M}_{T} is in $\nu\left(\mathcal{M}_{V}\right)$ if and only if, by the induced automorphism of $\pi_{1}(T),\left\langle b_{1}, \cdots\right.$, $\left.b_{g}\right\rangle$ is mapped in the normal subgroup generated by $\left\langle b_{1}, \cdots, b_{g}\right\rangle$.

Now the induced automorphisms of α_{1}, $\beta_{1} \alpha_{1}^{2} \beta_{1}, \beta_{i} \alpha_{i} \gamma_{i} \beta_{i}, \beta_{i+1} \alpha_{i+1} \gamma_{i} \beta_{i+1}$ are given by

