On the Generators of the Mapping Class Group of a 3-dimensional Handlebody

By Moto-o TAKAHASHI

Institute of Mathematics, University of Tsukuba (Communicated by Shokichi IYANAGA M. J. A., Nov. 13, 1995)

Let V be a handlebody of genus $g(\geq 2)$ and let $T = \partial V$. Let $\mathcal{M}_V, \mathcal{M}_T$ be the mapping class groups of V, T, respectively. (For the definition of a mapping class group, see [3].) It is well known that \mathcal{M}_T is isomorphic to the outer automorphism group of $\pi_1(T)$.

We have the injection $\nu: \mathcal{M}_V \to \mathcal{M}_T$ by letting the restriction $f \mid T: T \to T$ correspond to each homeomorphism $f: V \to V$.

In this paper we seek the generators of $\nu(\mathcal{M}_V) (\subset \mathcal{M}_T)$ which are as simple as possible as the products of the generators defined by Lickorish in [4].

Let $\alpha_i, \beta_i \ (i = 1, \dots, g), \nu_i (i = 1, \dots, g-1)$ be the isotopy classes of the Dehn twists about the simple loops shown in the Fig. 1.

We shall prove the following theorem.

Theorem. $\nu(\mathcal{M}_V)$ is generated by $\alpha_1, \beta_1 \alpha_1^2 \beta_1, \beta_i \alpha_i \gamma_i \beta_i, \beta_{i+1} \alpha_{i+1} \gamma_i \beta_{i+1} (i = 1, \dots, g - 1).$

Proof. Let $a_i, b_i \ (i = 1, \dots, g)$ be the generators of the fundamental group of the surface T as shown in the Fig. 2.

 $(\pi_1(T) \simeq \langle a_i, b_i (i = 1, \cdots, g) \mid s_1^{-1} s_2^{-1} \cdots$

 $s_g^{-1} = 1$, where $s_i = a_i^{-1} b_i^{-1} a_i b_i$, $i = 1, \dots, g$.)

By Suzuki [1], \mathcal{M}_{V} is generated by the isotopy classes of τ_{1} , ω_{1} , θ_{12} , ξ_{12} , ρ_{12} and ρ . The induced automorphisms of $\pi_{1}(T)$ are given by: $(\alpha \rightarrow b^{-1}\alpha)$

$$\nu(\tau_{1}) \begin{cases} a_{1} \rightarrow b_{1} \ a_{i} \\ a_{i} \rightarrow a_{i} \ (i = 2, \cdots, g) \\ b_{i} \rightarrow b_{i}(i = 1, \cdots, g), \end{cases} \\ \begin{cases} a_{1} \rightarrow a_{1}^{-1} s_{1}^{-1} \\ a_{i} \rightarrow a_{i}(i = 2, \cdots, g) \\ b_{1} \rightarrow a_{1}^{-1} b_{1}^{-1} a_{1} \\ b_{i} \rightarrow b_{i}(i = 2, \cdots, g) \end{cases} \\ \begin{cases} a_{1} \rightarrow a_{1} s_{2}^{-1} a_{1}^{-1} \\ a_{i} \rightarrow a_{i}(i = 2, \cdots, g) \\ b_{2} \rightarrow a_{2} b_{2} a_{1}^{-1} b_{1} a_{1} b_{2}^{-1} a_{2}^{-1} b_{2} \\ b_{i} \rightarrow b_{i}(i \neq 2) \end{cases} \\ \nu(\xi_{12}) \begin{cases} a_{1} \rightarrow b_{1} a_{1} b_{2}^{-1} s_{2} a_{1}^{-1} b_{1}^{-1} a_{1} \\ a_{2} \rightarrow a_{2} b_{2} a_{1}^{-1} b_{1}^{-1} a_{1} b_{2}^{-1} \\ a_{i} \rightarrow a_{i}(i = 3, \cdots, g) \\ b_{i} \rightarrow b_{i}(i = 1, \cdots, g), \end{cases} \\ \nu(\rho_{12}) \begin{cases} a_{1} \rightarrow s_{1}^{-1} a_{2} s_{1} \\ a_{2} \rightarrow a_{1} \\ a_{2} \rightarrow a_{1} \\ a_{i} \rightarrow a_{i}(i = 3, \cdots, g) \\ b_{1} \rightarrow s_{1}^{-1} b_{2} s_{1} \\ b_{2} \rightarrow b_{1} \\ b_{i} \rightarrow b_{i}(i = 3, \cdots, g) \end{cases} \\ \nu(\rho) \begin{cases} a_{i} \rightarrow a_{i+1} \ (i = 1, \cdots, g - 1) \\ a_{g} \rightarrow a_{1} \\ b_{i} \rightarrow b_{i+1}(i = 1, \cdots, g - 1) \\ b_{g} \rightarrow b_{1} \end{cases}$$

First we observe that each element stated in the theorem is actually an element of $\nu(\mathcal{M}_V)$. By [2], an element of \mathcal{M}_T is in $\nu(\mathcal{M}_V)$ if and only if, by the induced automorphism of $\pi_1(T)$, $\langle b_1, \cdots, b_g \rangle$ is mapped in the normal subgroup generated by $\langle b_1, \cdots, b_g \rangle$.

Now the induced automorphisms of α_1 , $\beta_1 \alpha_1^2 \beta_1$, $\beta_i \alpha_i \gamma_i \beta_i$, $\beta_{i+1} \alpha_{i+1} \gamma_i \beta_{i+1}$ are given by