Cubic Hyper-equisingular Families of Complex Projective Varieties. II

By Shoii TSUBOI

Department of Mathematics, Kagoshima University (Communicated by Heisuke HIRONAKA, M. J. A., Nov. 13, 1995)

This is a continuation of our previous paper [4], which will be referred to as Part I in this note. We inherit the notation and terminology of it.

§3. Variations of mixed Hodge structure.

3.1 Theorem. Let $\mathscr{X} \xrightarrow{a} \mathscr{X} \xrightarrow{\pi} M$ be an ncubic $(n \ge 1)$ hyper-equisingular family of complex projective varieties, parametrized by a complex manifold M. We define $R^\ell_{\boldsymbol{Z}}(\pi)$:= $R^\ell \pi_* \boldsymbol{Z}_{\mathscr{X}}$ (modulo torsion) $(0 \le \ell \le 2(\dim \mathcal{K} - \dim M)), R_Q^{\ell}(\pi) :=$ $R^{\ell}_{\boldsymbol{Z}}(\pi) \otimes_{\boldsymbol{Z}} \boldsymbol{Q} \text{ and } R^{\ell}_{\boldsymbol{\mathcal{O}}}(\pi) := R^{\ell} \pi_{*}(\pi \cdot \mathcal{O}_{M}) \stackrel{\boldsymbol{Q}}{\simeq} R^{\ell} \pi_{*}$ $(DR_{\mathcal{K}/M})$, where $\pi \mathcal{O}_M$ is the topological inverse of the structure sheaf of M by the map $\pi:\mathscr{X}$ $\rightarrow M$ and $DR^{\cdot}_{\mathscr{X}/M}$ the cohomological relative de Rham complex of the family $\pi: \mathscr{X} \to M$. Then there exist a family of increasing sub-local systems W(weight filteration) on $R^{\ell}_{\rho}(\pi)$ and a family of decreasing holomorphic subbundles $m{F}$ (Hodge filteration) on $R^{\ell}_{\mathcal{O}}(\pi)$ such that

(i) there are spectral sequences

$${}_{W}E_{1}^{p,q} \simeq \bigoplus_{|\alpha|=p+1} R^{q} \pi_{\alpha*} Q_{\mathscr{X}_{\alpha}} \Longrightarrow$$

 ${}_{W}E_{\infty}^{p,q} = Gr_{-p}^{W}(R_{Q}^{p+q}(\pi)),$
 ${}_{F}E_{1}^{p,q} \simeq R^{q} \pi_{*}(s(a_{1}.*\Omega_{\mathscr{X}./M}^{p})[1]) \Longrightarrow$
 ${}_{F}E_{\infty}^{p,q} = Gr_{F}^{p}(R_{\ell}^{p+q}(\pi))$

with $_{W}E_{2}^{\rho,q} = {}_{W}E_{\infty}^{\rho,q}$, $_{F}E_{1}^{\rho,q} = {}_{F}E_{\infty}^{\rho,q}$, (ii) $(R_{Z}^{\ell}(\pi), W[\ell], F)$ defines mixed Hodge

strucutre at each point $t \in M$, where $W[\ell]$ denotes the shift of the filteration degree to the right by ℓ , i.e., $W[\ell]_q \mathrel{\mathop:}= W_{q-\ell}$, and

(iii) (the Griffiths transversality) $\nabla \mathcal{F}^{p} \subset \Omega^{1}_{u} \otimes \mathcal{F}^{p-1}$

$$V \mathscr{F}^{*} \subseteq \Omega^{*}_{M} \otimes \mathscr{F}^{*}$$

where ∇ denotes the Gauss-Mannin connection on $R^{\epsilon}_{\mathscr{O}}(\pi)$.

Outline of the proof. (i), (ii): By Theorem 2.1 and Theorem 2.2 in [4], we have an isomorphism $\overline{a} : \overline{a} : \overline{a} : \overline{a} : \overline{b} : \overline{a} : \overline{b} : \overline{$ $\pi^{\cdot} \mathcal{O}$

$$\mathcal{O}_{M} \approx DR_{\mathcal{X}/M} \approx s(a_{1} \cdot Q_{\mathcal{X}/M})[1]$$

in $D^+(\mathscr{X}, C)$, where $a_{1,*}\Omega_{\mathscr{X},M}$ is the *n*-cubic object of complexes of C-vector spaces coming from $\Omega^{\boldsymbol{\cdot}}_{\mathscr{X}./M}$, and $s(a_{1.*}\Omega^{\boldsymbol{\cdot}}_{\mathscr{X}./M})$ is its associated single complex (cf. Part I, [1, Exposé I,6]). By this isomorphism we have

$$R^{\ell}_{\mathcal{O}}(\pi) := R^{\ell} \pi_*(\pi^{\cdot} \mathcal{O}_M) \simeq R^{\ell} \pi_*(s(a_{1.*} \Omega_{\mathcal{X}/M})[1]).$$

To compute the hyper-direct image $\mathbf{R}^{e}\pi_{*}(s)$ $(a_{1*}\Omega_{\mathcal{X}/M})$ [1]), we shall use the fine resolution $\mathscr{A}_{\mathscr{X},/M}^{\bullet,\bullet}$ of $\mathscr{Q}_{\mathscr{X},/M}^{\bullet}$, where $\mathscr{A}_{\mathscr{X}_{\alpha}/M}^{r,s}$ are the sheaves of C^{∞} relative differential forms of type (r, s) on $\mathscr{X}_{\alpha}(\alpha \in \Box_{r})$. Then the natural homomorphism

 $s(a_{1} \cdot * \Omega^{\cdot}_{\mathcal{X}./M})[1] \rightarrow s(a_{1} \cdot * \operatorname{tot} \mathscr{A}^{\cdot}_{\mathcal{X}./M})[1]$ is an isomorphism in $D^+(\mathcal{X}, C)$, where tot $\mathcal{A}_{\mathcal{X}, M}^{\prime\prime}$ is the single complex associated to the double complex $\mathscr{A}_{\mathscr{X}_{\alpha}/M}^{\prime\prime}$ for each $\alpha \in \Box_n$. Since $s(a_{1,*}$ tot $\mathscr{A}_{\mathscr{X},/\mathscr{M}}^{::}$ [1] is π_* -acyclic, we have

 $R^{\ell}_{\mathcal{O}}(\pi) \simeq H^{\ell}(\pi_* s(a_{1\cdot*} \mathrm{tot} \mathscr{A}^{\boldsymbol{\cdot}}_{\mathscr{X}./M})[1]).$ We define an increasing filteration $W = \{W_a\}$ and a decreasing one $F = \{F^q\}$ on the single complex $L := \pi_* s(a_{1,*} \text{tot} \mathscr{A}_{\mathscr{X}/M})$ [1] by

$$W_{-q}(\pi_* s(a_{1\cdot*} \operatorname{tot} \mathscr{A}_{\mathscr{X}./M}^{\cdot\cdot})[1])$$

:= $\sigma_{|\alpha| \ge q+1} \pi_* s(a_{1\alpha*} \operatorname{tot} \mathscr{A}_{\mathscr{X}\alpha/M}^{\cdot\cdot}) \quad (q \ge 0) \text{ and}$
 $F^{p}(\pi_* s(a_{1\cdot*} \operatorname{tot} \mathscr{A}_{\mathscr{X}./M}^{\cdot\cdot})[1])$

 $:= \sigma_{k \ge p} \pi_* s(a_{1 \cdot *} \operatorname{tot} \mathscr{A}_{\mathscr{X} \cdot / M}^{\kappa \cdot})[1] \quad (p \ge 0),$ where $\sigma_{|\alpha| \geq q+1} \pi_* s(a_{1\alpha*} \text{tot} \mathscr{A}_{\mathscr{X}_q/M}) := \sigma_{\geq q}(L)$ if we put $L := \pi_* s(a_{1\cdot*} \text{tot} \mathscr{A}_{\mathscr{X}/M})[1]$. $(\sigma_{\geq q}: stupid$ *filteration*). Notice that the filteration W is defined over Q. We calculate the spectral sequence associated to these filterations, abutting to $R^{\ell}_{\ell i}(\pi)$. Since (L_{i}, W, F) is a cohomological mixed Hodge complex in the sense of Deligne for any $t \in$ M (for definition see [1, (8.1.6)]), the spectral sequence $\{E_r(L_t, W), d_r\}$ degenerates at the E_2 -terms and the one associated to F degenerates at the E_1 -terms ([2, p.48, Théorème 3.2.1 (Deligne), (vi), (v)]). The assertions (i) and (ii) follow from this.

(iii): We take a point $o \in M$ and put $X_{\alpha} :=$ $(\pi \cdot a_{\alpha})^{-1}(o), X := \pi^{-1}(o)$. By the definition of an *n*-cubic hyper-equisingular family $\mathscr{X} \xrightarrow{a} \mathscr{X}$ $\stackrel{\pi}{\longrightarrow} M$, it is analytically locally trivial. Hence, schrinking M sufficiently small around o, we are allowed to assume that there is a system of Stein coverings $\mathcal{U}_{\alpha} := \{U_i^{(\alpha)}\}_{i \in \Lambda_{\alpha}}$ of $X_{\alpha} (\alpha \in \square_n^+)$, which is subject to the following requirements:

(1) for each pair (α, β) of elements of $Ob(\square_n^+)$ with $\alpha \to \beta$ in \square_n^+ , there is a map $\lambda_{\alpha\beta}: \Lambda_{\beta} \rightarrow \Lambda_{\alpha}$ such that