Cubic Hyper-equisingular Families of Complex Projective Varieties. I

By Shoji TSUBOI

Department of Mathematics, Kagoshima University (Communicated by Heisuke HIRONAKA, M. J. A., Nov. 13, 1995)

Introduction. The purpose of this note is to outline a recent result of the author's study on *cubic hyper-equisingular families of complex projec*tive varieties, from which there naturally arise variations of mixed Hodge structure. In order to define such families we use *cubic hyper-resolutions* of complex projective varieties due to V. Navarro Aznar, F. Guillén *et al.*, [1]. The initial motivation for this study was to describe the variation of mixed Hodge structure which might be expected to arise from a *locally trivial* family of projective varieties with *ordinary singularities* (cf. [3], [4]). Details will be published elsewhere.

§1. Cubic hyper-equisingular families of complex projective varieties. We denote by Z the integer ring.

1.1 Definition. For $n \in \mathbb{Z}$ with $n \ge 0$ the augmented *n*-cubic category, denoted by \square_n^+ , is defined to be a category whose objects $Ob(\square_n^+)$ and the set of homomorphisms $Hom_{\square_n^+}(\alpha, \beta)$ $(\alpha = (\alpha_0, \alpha_1, \ldots, \alpha_n), \beta = (\beta_0, \beta_1, \ldots, \beta_n) \in Ob(\square_n^+)$ are given as follows:

 $Ob(\square_n^+) := \{ \alpha = (\alpha_0, \alpha_1, \dots, \alpha_n) \in \mathbb{Z}^{n+1} \\ \mid 0 \le \alpha_i \le 1 \text{ for } 0 \le i \le n \},\$

Hom_ $\square_n^+(\alpha, \beta) :=$

 $\begin{cases} \alpha \to \beta \text{ (an arrow from } \alpha \text{ to } \beta) & \text{if } \alpha_i \leq \beta_i \text{ for } 0 \leq i \leq n \\ \emptyset & \text{otherwise.} \end{cases}$

For n = -1 we understand \Box_{-1}^+ to be the punctual category $\{*\}$, i. e., the category consisting of one point. For $n \ge 0$ the *n*-cubic category, denoted by \Box_n , is defined to be the full subcategory of \Box_n^+ with $Ob(\Box_n) = Ob(\Box_n^+) - \{(0, \ldots, 0)\}$. Notice that $Ob(\Box_n^+) - \{(0, \ldots, 0)\}$ (resp. $Ob(\Box_n)$) can be considered as a finite ordered set whose order is defined by $\alpha \le \beta \Leftrightarrow \alpha \to \beta$ for $\alpha, \beta \in Ob(\Box_n^+)$ (resp. $Ob(\Box_n)$).

1.2 Definition. A \square_n^+ -object (resp. \square_n^- object) of a category \mathscr{C} is a contravariant functor X.⁺ (resp. X.) from \square_n^+ (resp. \square_n) to \mathscr{C} . It is also called an *augmented* n-cubic object of \mathscr{C} (resp. an n-cubic object of \mathscr{C}).

1.3 Definition. Let X., Y. be \square_n^+ -objects

of a category \mathscr{C} . We define a morphism $\Phi: X$. $\rightarrow Y$. to be a natural transformation from the functor X. to the one Y. over the identity functor id: $\Box_n^+ \rightarrow \Box_n^+$.

Let X. be an *n*-cubic object of \mathscr{C} $(n \ge 0)$, X a (-1)-object of \mathscr{C} . We denote by $X \times \square_n$ the *n*-cubic object defined by $(X \times \square_n)(\alpha) = X$ for every $\alpha \in \square_n$. An *augmentation of* X. to X is a morphism from X. to $X \times \square_n$. We may think of an *n*-cubic object of \mathscr{C} with an augmentation to X as an augmented *n*-cubic object of \mathscr{C} . Conversely, an augmented *n*-cubic object X^+ : $(\square_n^+)^\circ \to \mathscr{C}$ of \mathscr{C} can be identified with an *n*-cubic object X. := $X^+_{:|\square_n}$: $(\square_n)^\circ \to \mathscr{C}$ of \mathscr{C} with an augmentation to $X^+_{(0,...,0)}$. In the following we shall interchangeably use an augmented *n*-cubic object of \mathscr{C} and an *n*cubic object of \mathscr{C} with an augmentation.

1.4 Definition. For a \Box_n^+ -complex projective variety $X_{\cdot,n}$ a contravariant functor Y_{\cdot} from \Box_1^+ to the category of \Box_n^+ -complex projective varieties is called a 2-resolution of X_{\cdot} if Y_{\cdot} is defined by a cartesian square of morphisms of \Box_n^+ -complex projective varieties

(1.1)
$$\begin{array}{ccc} Y_{11} & \longrightarrow & Y_{01}. \\ \downarrow & & \downarrow f \\ Y_{10} & \longrightarrow & Y_{00}. \end{array}$$

which satisfies the following conditions:

(i) $Y_{00} = X_{.}$

- (ii) Y_{01} . is a smooth \Box_n^+ -complex projective variety, i.e., a contravariant functor from \Box_n^+ to the category of smooth complex projective varieties,
- (iii) the horizontal arrows are closed immersion of \Box_n^+ -complex projective varieties,
- (iv) f is a proper morphism between \Box_n^+ complex projective varieties, and
- (v) f induces an isomorphism from $Y_{01\beta} Y_{11\beta}$ to $Y_{00\beta} Y_{10\beta}$ for any $\beta \in \operatorname{Ob}(\square_n^+)$.

We think of the cartesian square in (1.1) as a morphism from the \Box_{n+1}^+ -complex projective variety $Y_{1..}$ to the one $Y_{0...}$ and write it as $Y_{1..} \rightarrow Y_{0...}$ For a 2-resolution Z. of $Y_{1...}$ we define the