Accessibility of Infinite Dimensional Brownian Motion to Holomorphically Exceptional Set^{*)}

By Hiroshi SUGITA**) and Satoshi TAKANOBU***)

(Communicated by Kiyosi ITÔ, M. J. A., Nov. 13, 1995)

1. Introduction. In [6], we introduced the notion of holomorphically exceptional sets of the complex Wiener space. In particular, we pointed out the following remarkable relation between holomorphically exceptional sets and the standard Brownian motion $(Z_t)_{t\geq 0}$ on the complex Wiener space: Z_t does not hit a holomorphically exceptional set until time 1 almost surely.

In any finite dimensional space, if the Brownian motion does not hit a certain set until time 1 almost surely, neither does it after time 1. So one may guess that the infinite dimensional Brownian motion never hits a holomorphically exceptional set after time 1, either.

But we will show in the present paper that the above guess is false. That is, we will construct a holomorphically exceptional set which the Brownian motion $(Z_t)_{t\geq 0}$ hits after a certain time $t_0 > 1$ almost surely.

The reason why such an example can exist lies essentially in a fact that the distributions of $(Z_t)_{t\geq 0}$ at different times are mutually singular.

2. Presentation of Theorem. Let (B, H, μ) be a *real* abstract Wiener space, i.e., *B* is a real separable Banach space (whose dimension is infinite), *H* is a real separable Hilbert space continuously and densely imbedded in *B* and μ is a Gaussian measure satisfying

$$\int_{B} \exp(\sqrt{-1}\langle z, l \rangle) \mu(dz) = \exp\left(-\frac{1}{4} \| l \|_{H^{*}}^{2}\right)$$
$$l \in B^{*} \subset H^{*}$$

We introduce an almost complex structure $J: B \rightarrow B$ which is an isometry such that $J^2 = -1$ and that the restriction $J|_H: H \rightarrow H$ is also an isometry. The abstract Wiener space (B, H, μ) endowed with the almost complex stucture J is

called an almost complex abstract Wiener space and denoted by (B, H, μ, J) .

denoted by (B, H, μ, J) . Let B^{*C} be the complexification of the dual space B^* . Then define

$$B^{*(1,0)} := \{ \varphi \in B^{*C} | J^* \varphi = \sqrt{-1} \varphi \},\ B^{*(0,1)} := \{ \varphi \in B^{*C} | J^* \varphi = -\sqrt{-1} \varphi \}.$$

In other words, $B^{*(1,0)}$ is the space of bounded complex linear functionals on B and $B^{*(0,1)}$ is the space of bounded complex anti-linear functionals on B. We see that $B^{*C} = B^{*(1,0)} \oplus B^{*(0,1)}$. The Hilbert spaces H^{*C} , $H^{*(1,0)}$ and $H^{*(0,1)}$ are similarly defined.

Definition. 1. A function $G: B \rightarrow C$ is called a *holomorphic polynomial*, if it is expressed in the form

(1) $G(z) = g(\langle z, \varphi_1 \rangle, \ldots, \langle z, \varphi_n \rangle), z \in B$, where $n \in N, g : C^n \to C$ is a polynomial with complex coefficients and $\varphi_1, \ldots, \varphi_n \in B^{*(1,0)}$ The class of all holomorphic polynomials is denoted by \mathcal{P}_{h} .

Definition. 2. Let $p \in (1, \infty)$. For a sequence $\{G_n\} \subset \mathcal{P}_h$ such that $\sum_n || G_n ||_{L^p(\mu)} < \infty$, we define a subset $N^p(\{G_n\})$ of B by (2) $N^p(\{G_n\}) := \{z \in B \mid \Sigma \mid G_n(z) \mid = \infty\}.$

A set $A \subseteq B$ is called an L^{p} -holomorphically exceptional set, if it is a subset of a set of the type $N^{p}(\{G_{n}\})$. We denote the class of all L^{p} holomorphically exceptional sets by \mathcal{N}_{h}^{p} . If an assertion holds outside of an L^{p} -holomorphically exceptional set, we say that it holds "a.e. (\mathcal{N}_{h}^{p}) ".

Let $(Z_t)_{t\geq 0}$ be a *B*-valued independent increment process defined on a probability space (Ω, \mathcal{F}, P) such that $Z_0 = 0$ and the distribution of $Z_t - Z_s$, t > s, is μ_{t-s} , where $\mu_r(\cdot) := \mu(\cdot / \sqrt{r})$. Then the process $(Z_t)_{t\geq 0}$ becomes a diffusion process on *B* and it is called a *B*-valued *Brownian motion* (see, for example, [3]).

In [6], it is known that $(Z_t)_{t\geq 0}$ does not hit any L^p -holomorphically exceptional set until time 1 almost surely.

Theorem. There exists an L^2 -holomorphically exceptional set $A \subseteq B$ such that

^{*)} Dedicated to Professor Shinzo Watanabe on his 60th birthday.

^{**)} Graduate School of Mathematics, Kyushu University

^{***)} Department of Mathematics, Faculty of Science, Kanazawa University.