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1. The theorem. Let B, (n =0,1,2,...)
be the Bernoulli numbers defined by the formal
power series

" —1 =0
and put B, = (n + 1)B,. As is well known and
easily seen, B, = — 1 and B, = 0 for all odd in-
tegers = 3. In this note we present the following
recurrence relation.

Theorem. The B,’s satisfy
5 _ 1 ml/n+1) 5
(1) B, = n+1’§)( l. ) Byyi (n 2 D).

Remark. The formula has a strong resembl-
ance to the usual recurrence
1 2l/n+1
B, = _n+1,§)< i )B"
(see [2] for example) but needs half the number of
terms to calculate B,,.

We shall give two proofs. The first proof
uses a continued fraction expansion and its con-
vergents of the defining power series of B,,. This
method faithfully traces our original way of dis-
covering the formula and seems to apply to sear-
ching similar kinds of formulas for various num-
bers defined by nice generating functions. The
second and much simpler proof is due to Don
Zagier, to whom the author expresses his grati-
tude for permitting him to include the proof in
the paper.

2. Convergents of continued fraction expan-
sion. Let f(@) =1+cx+cx’+ - be a
formal power series (over some field) with con-
stant term 1. Suppose f(x) has a continued frac-
tion expansion

1 ax a,x ax

@ f@O=ETFrTFriFIis
with non-zero @;’s and let

Q,(r) 1 ax a,_,x

P 1+1+ "1+ax
be its #-th convergent. The polynomials P,(x)
and @,(x) are uniquely determined from
f(x) by the following conditions:

(3) P,(0) = Q,(0) =1.
(4) deg P,(x) = deg Q,(x) = m if n =-2m,
degP,(x) =degQ, (@) +1=m+1ifn=2m+1
(5) f@ = Q,(x)/P,(x) mod ™"

(in the ring of formal power series).

Both P,(x) and @,(x) satisfy the same re-
currence relations
(6) P,(x) =P, (v) + a,xP, ,(x),

Q,(® =Q,_ (@ + a,xQ,_,(x) (n =2)
with the initial conditions P, =1, P, =1+
a,x, Q, =@, =1.

Now we put f(x) = (Jx/2) coth (Vx /2),
where cothy = (¢’ + ¢™*)/(¢" — ¢7*). This is a
generating function of even index Bernoulli num-

bers:
n

ed x
f@ = & B myt

n=0
In this case, the coefficients a; in (2) are

given by a, = —1/12, az,,=(2"2+2)/(12

(5 ) and e = () /(22(* %))

(m = 1). This can be deduced from the famous
expansion
tanhvx 1 x x
Jx 1+3+5+

with the aid of a formula for the inverse of a
given continued fraction expansion ([3, p. 332]),
but we omit the details here. The key point of
our proof of the theorem lies in the explicit de-
scription of the convergents of the continued frac-
tion expansion of f(x) (= (Jx /2) coth(Yx/2)).

Lemma. With the notations as o‘pbove, we have
Py (@) = m—;z:T) %0 C @ + )
-1 i
(22;?:11><2;1f1) m(’” =D
Oon(2) = ﬁo(zmzj 1 )(4”12;r ?)’ (;i;! (m = 0)



