Commutation Relations of Differential Operators and Whittaker Functions on $S p_{2}(R)^{*)}$

By Shinji NIWA
Nagoya City College of Child Education
(Communicated by Shokichi IY^NAGA, M. J. A. . Oct. 12, 1995)

§1. As usual we consider an element in the center of the universal enveloping algebra of Lie algebra of a Lie group G as a differential operator on G. Generators of the center of the universal enveloping algebra of $\mathfrak{p p}(2, \boldsymbol{R})$ are given in [6].

$$
\begin{gathered}
\text { Put } \\
H_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 \\
0 & 0 & -1
\end{array}\right) 0 \\
0
\end{gathered} 0
$$

Then the generators of the center of the universal enveloping algebra of $\mathfrak{B p}(2, \boldsymbol{R})$ in [6] are $\lambda\left(L_{1}\right)=H_{1} H_{1}+H_{2} H_{2}+6 H_{1}+2 H_{2}$
$+4 X_{-1} X_{1}+8 X_{-4} X_{4}+4 X_{-3} X_{3}+8 X_{-2} X_{2}$, $\lambda\left(L_{2}\right)=16 X_{-4} X_{-4} X_{4} X_{4}+16 X_{-4} X_{-3} X_{3} X_{4}$
$-32 X_{-4} X_{-2} X_{2} X_{4}+16 X_{-4} X_{-2} X_{3} X_{3}$
$+16 X_{-4} X_{-1} X_{1} X_{4}+8 X_{-4} H_{1} H_{2} X_{4}$
$+8 X_{-4}\left(H_{1}-H_{2}\right) X_{1} X_{3}-16 X_{-4} X_{1} X_{1} X_{2}$
$+16 X_{-3} X_{-3} X_{2} X_{4}+16 X_{-3} X_{-2} X_{2} X_{3}$
$+8 X_{-3} X_{-1}\left(H_{1}-H_{2}\right) X_{4}+4 X_{-3} H_{2} H_{2} X_{3}$
$+8 X_{-3}\left(H_{1}+H_{2}\right) X_{1} X_{2}+16 X_{-2} X_{-2} X_{2} X_{2}$
$-16 X_{-2} X_{-1} X_{-1} X_{4}+8 X_{-2} X_{-1}\left(H_{1}+H_{2}\right) X_{3}$
$+16 X_{-2} X_{-1} X_{1} X_{2}-8 X_{-2} H_{1} H_{2} X_{2}$
$+4 X_{-1} H_{1} H_{1} X_{1}+H_{1} H_{1} H_{2} H_{2}-16 X_{-4} H_{1} X_{4}$
$+32 X_{-4} H_{2} X_{4}+32 X_{-4} X_{1} X_{3}+32 X_{-3} X_{-1} X_{4}$
$-8 X_{-3} H_{1} X_{3}+16 X_{-3} X_{1} X_{2}+16 X_{-2} X_{-1} X_{3}$
$-16 X_{-2}\left(H_{1}+H_{2}\right) X_{2}+24 X_{-1} H_{1} X_{1}$

[^0]\[

$$
\begin{aligned}
& +2 H_{1} H_{1} H_{2}+6 H_{1} H_{2} H_{2}-48 X_{-4} X_{4} \\
& -24 X_{-3} X_{3}-48 X_{-2} X_{2}+24 X_{-1} X_{1}-2 H_{1} H_{1} \\
& +12 H_{1} H_{2}+6 H_{2} H_{2}-12 H_{1}+12 H_{2} .
\end{aligned}
$$
\]

We can find the generators of the centers of the universal enveloping algebras of the Lie algebras of classical groups by [6], [3]. The generators of the symmetric algebra $S(\mathfrak{g})$ of $\mathfrak{g}=\mathfrak{g l}(4, \boldsymbol{R})$ are f_{2}, f_{4}, f_{6} in [3, §13, no. 4, (VI), p. 189]. The polynomial functions f_{2}, f_{4}, f_{6} on g are the coefficients of the characteristic polynomial of the identity representation of g. Identifying the dual of g with g and applying a symmetrizer Λ such that
$\Lambda\left(X_{1} X_{2} \ldots X_{n}\right)=\sum_{\sigma \in \mathfrak{פ}_{n}} X_{\sigma(1)} X_{\sigma(2)} \ldots X_{\sigma(n)}\left(X_{i} \in \mathfrak{g}\right)$ on the universal enveloping algebra $U(\mathrm{~g})$ of g to f_{2}, f_{4}, f_{6}, we get the generators $\beta_{2}=\Lambda\left(f_{2}\right), \beta_{3}=$ $\Lambda\left(f_{4}\right), \beta_{4}=\Lambda\left(f_{6}\right)$ of the center of $U(\mathrm{~g})$.
§2. We define the Weil representation r_{n} of $S p_{2}(\boldsymbol{R})$ on $\mathscr{\&}\left(V_{n} \times V_{n}\right), V=V_{n}=M_{n, 2}(\boldsymbol{R})$ by putting
$r_{n}\left(\begin{array}{cc}E & X \\ 0 & E\end{array}\right) f\binom{X_{1}}{X_{2}}=\exp \left(2 \pi i \operatorname{tr}\left(X^{t} X_{1} X_{2}\right)\right) f\binom{X_{1}}{X_{2}}$, $r_{n}\left(\begin{array}{cc}A & 0 \\ 0 & A^{-1}\end{array}\right) f\binom{X_{1}}{X_{2}}=(\operatorname{det} A)^{n} f\binom{X_{1} A}{X_{2} A}$,
$r_{n}\left(\begin{array}{cc}0 & E \\ -E & 0\end{array}\right) f\binom{X_{1}}{X_{2}}=\int_{V_{n}} \int_{V_{n}} \exp (2 \pi i \operatorname{tr}$
$\left.\left({ }^{t} Y_{1}^{t} X_{2}+{ }^{t} Y_{2} X_{1}\right)\right) f\binom{Y_{1}}{Y_{2}} d Y_{1} d Y_{2}$
for $f \in \mathscr{S}\left(V_{n} \times V_{n}\right), \quad X={ }^{t} X \in M_{2,2}(\boldsymbol{R}), \quad A \in$ $M_{2,2}(\boldsymbol{R}), E=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), X_{1} \in V_{n}, X_{2} \in V_{n}$.
Put $G_{1}=S L(2, \boldsymbol{R}), G_{3}=S L(4, \boldsymbol{R})$. Then we can define representations ρ_{2}, ρ_{3} of $G_{1} \times G_{1}, G_{3}$ on $\&\left(V_{2} \times V_{2}\right), \&\left(V_{3} \times V_{3}\right)$ in the following manner. First we define linear mappings σ_{1}, σ_{3} by

$$
\sigma_{1}(X)=\left(\begin{array}{cc}
a & d \\
b & -c
\end{array}\right) \text { for } X={ }^{t}\left(\begin{array}{llll}
a & b & c & d
\end{array}\right) \in M_{4,1}(\boldsymbol{R})
$$

and

[^0]: *) Dedicated to Professor Hideo Shimizu on his sixtieth birthday.

