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0. Introduction. We denote by Qp the 2. The ease p- 2. Let L/Q2 be a Galois
rational p-adic field for a prime p. It is extension of degree 8. We see that the Galois
well-known that there exist only finitely many group of L/Q2 is isomorphic to D4 if and only if
extensions of a fixed degree over Qp in a fixed L contains an intermediate field of degree 4
algebraic closure of Q (cf. Weil [4] p. 208). Fu- which is not a Galois extension over Q.. Thus it
jisaki [1] exhibited all extensions over Q whose is sufficient to construct all quadratic extensions
Galois group is isomorphic to the quaternion over K which are not Galois extensions over Q.,
group of order 8. In this note, we shall exhibit all where Ki is a quadratic extension over Q.. We
extensions L over Q whose Galois group is iso- get Mi Ki(v) for an s Ki such that s’/s
morphic to the dihedral group D4 of order 8. We is not square in K for the generator a of the
call such extensions D4-extensions. We shall Galois group of Ki/Q.. We see Mr- Ki(/), L
show that there exist no such extension for p Ki(v ]-) and M Ki() So we ex-
lmod4, one extension for p - 3 rood 4 and amine a representative system of Ki/(Ki) . We
eighteen extensions for p 2. take all pairs {s, sa} of the system such that s

We denote by K the quadratic extension samod (Ki) . By putting L-Ki(v, g/), we
over Q such that L/K is a cyclic extension of get all D4-extensions L/Q.
degree 4. We denote by K1 and K. the other two It is well-known that all quadratic exten-
quadratic extensions over Qp in L. We denote by sions over Q. are Q.(/- 1), Q2(/- 5), Q.(),
M the compositum of K1 and K2. We denote by Q.(/2), Q.(/ 2), Q(1v/l-6) and Q.(/- 10).
Mi and M[ the quadratic extensions over Ki in L Next we examine all possible cases for Ki. We
which are not Galois extensions over Q. We denote by o the ring of integers of K.
deal with the case of odd primes in {} 1. We ex- 2-1. Ki Q.(/-) form --+ 2, --- 10.
hibit all D4-extensions over Q2 in 2 by getting In this case, p (/-) is the prime ideal of
all such M and M.’ Ki. We see that all elements of 1 -- ps are square

We remark that Yamagishi [3] computed the in K. Therefore we get Ki/(Ki) - ((v/--)/(rn))
number of extensions K over a finite extension x (o/(1 -+-m-+-2/-, 1 + ps)) by 1 -t-rn + 2
k/Q whose Galois group Gal(K/k)is isomor- /-(1 +/-). For constructing D4-extensions,
phic to a fixed finite p-group (cf. see also cited it is sufficient to examine elements s and s/-,
papers in [3]). where s-- a+ b/ for a= 1,3,5,7 and b-

1. The ease p 4= 2. Let L/Q be a D- 0,1,2,3. We take s(resp, sf-) such that s, s,
extension. L/Q, has four intermediate fields Mx, s(1 -+- m -t- 2 -) and s(1 -+- m 4- 2 ) (resp.
M, M., Mofdegree 4 which are not Galois ex- s, s, s(1 + m-t-2v-) and (1 4-m-+-2
tensions over Q We see that they are totally -)) are different modulo ps each other. Then
and tamely ramified, because p is an odd prime, we get D,-extensions as follows:
We see by Serre [2] that Qp has four totally and A- {Q.(v/1 -t- /g, /- 1), Q(v/3 -- , V-),
tamely ramified extensions of degree 4. Therefore Q2((-, /: i), Q.(v/3v/2, v/- 1:},
we see that Q has at most one D4-extension. In A2 {Q(/v/- 2, /- 1), Q.(v/3---ff, /- 1)},
the case p--lmod4, we see that Q has no B {O.(v/1 +/--2, /--5), Q(v/5 +/--2,
D4-extension, because Q(-)/Q is a totally and v/- 5)},
tamely ramified Galois extension of degree 4. In C {Q.(]/- 2 (1 + /- 2), v/),
the case p 3 rood 4, we see that Qp(/- 1 Q.(v//- 2 (1 + 3v/- 2), /-)},
-)/Q is a D4-extension. C2 {(v/v/- 10 (1 + /- 10), /),


