Dihedral Extensions of Degree 8 over the Rational p-adic Fields

By Hirotada NAITO

Department of Mathematics, Faculty of Education, Kagawa University (Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1995)

0. Introduction. We denote by Q_p the rational p-adic field for a prime p. It is well-known that there exist only finitely many extensions of a fixed degree over Q_p in a fixed algebraic closure of Q_p (cf. Weil [4] p. 208). Fujisaki [1] exhibited all extensions over Q_p whose Galois group is isomorphic to the quaternion group of order 8. In this note, we shall exhibit all extensions L over Q_p whose Galois group is isomorphic to the dihedral group D_4 of order 8. We call such extensions D_4 -extensions. We shall show that there exist no such extension for $p \equiv 1 \mod 4$, one extension for $p \equiv 3 \mod 4$ and eighteen extensions for $p \equiv 2$.

We denote by K the quadratic extension over Q_p such that L/K is a cyclic extension of degree 4. We denote by K_1 and K_2 the other two quadratic extensions over Q_p in L. We denote by M the compositum of K_1 and K_2 . We denote by M_i and M_i' the quadratic extensions over K_i in L which are not Galois extensions over Q_p . We deal with the case of odd primes in § 1. We exhibit all D_4 -extensions over Q_2 in § 2 by getting all such M_i and M_i' .

We remark that Yamagishi [3] computed the number of extensions K over a finite extension k/Q_p whose Galois group Gal(K/k) is isomorphic to a fixed finite p-group (cf. see also cited papers in [3]).

1. The case $p \neq 2$. Let L/Q_p be a D_4 -extension. L/Q_p has four intermediate fields M_1 , M_1 , M_2 , M_2' of degree 4 which are not Galois extensions over Q_p . We see that they are totally and tamely ramified, because p is an odd prime. We see by Serre [2] that Q_p has four totally and tamely ramified extensions of degree 4. Therefore we see that Q_p has at most one D_4 -extension. In the case $p \equiv 1 \mod 4$, we see that Q_p has no D_4 -extension, because $Q_p(\sqrt[4]{p})/Q_p$ is a totally and tamely ramified Galois extension of degree 4. In the case $p \equiv 3 \mod 4$, we see that $Q_p(\sqrt{-1})$, $\sqrt[4]{p}/Q_p$ is a D_4 -extension.

2. The case p = 2. Let L/Q_2 be a Galois extension of degree 8. We see that the Galois group of L/Q_2 is isomorphic to D_4 if and only if L contains an intermediate field of degree 4 which is not a Galois extension over Q_2 . Thus it is sufficient to construct all quadratic extensions over K_i which are not Galois extensions over Q_2 , where K_i is a quadratic extension over Q_2 . We get $M_i = K_i(\sqrt{\varepsilon})$ for an $\varepsilon \in K_i^{\times}$ such that $\varepsilon^{\sigma}/\varepsilon$ is not square in K_i for the generator σ of the Galois group of K_i/Q_2 . We see $\underline{M}_i' = K_i(\sqrt{\varepsilon^{\sigma}})$, L $=K_i(\sqrt{\varepsilon}, \sqrt{\varepsilon^{\sigma}})$ and $M=K_i(\sqrt{\varepsilon\varepsilon^{\sigma}})$. So we examine a representative system of $K_i^{\times}/(K_i^{\times})^2$. We take all pairs $\{\varepsilon, \varepsilon^{\sigma}\}$ of the system such that $\varepsilon \not\equiv$ $\varepsilon^{\sigma} \mod (K_i^{\times})^2$. By putting $L = K_i(\sqrt{\varepsilon}, \sqrt{\varepsilon^{\sigma}})$, we get all D_4 -extensions L/Q_2 .

It is well-known that all quadratic extensions over Q_2 are $Q_2(\sqrt{-1})$, $Q_2(\sqrt{-5})$, $Q_2(\sqrt{5})$, $Q_2(\sqrt{2})$, $Q_2(\sqrt{-2})$, $Q_2(\sqrt{10})$ and $Q_2(\sqrt{-10})$. Next we examine all possible cases for K_i . We denote by $\mathfrak o$ the ring of integers of K_i .

2-1.
$$K_i = \mathbf{Q}_2(\sqrt{m})$$
 for $m = \pm 2, \pm 10$.

In this case, $\mathfrak{p}=(\sqrt{m})$ is the prime ideal of K_i . We see that all elements of $1+\mathfrak{p}^5$ are square in K_i . Therefore we get $K_i^\times/(K_i^\times)^2\cong(\langle\sqrt{m}\rangle/\langle m\rangle)\times(\mathfrak{p}^\times/\langle 1+m+2\sqrt{m}\,,\,1+\mathfrak{p}^5\rangle)$ by $1+m+2\sqrt{m}=(1+\sqrt{m})^2$. For constructing D_4 -extensions, it is sufficient to examine elements ε and $\varepsilon\sqrt{m}$, where $\varepsilon=a+b\sqrt{m}$ for a=1,3,5,7 and b=0,1,2,3. We take $\varepsilon(\text{resp. }\varepsilon\sqrt{m})$ such that $\varepsilon,\varepsilon''$, $\varepsilon(1+m+2\sqrt{m})$ and $\varepsilon''(1+m+2\sqrt{m})$ (resp. $\varepsilon,-\varepsilon''$, $\varepsilon(1+m+2\sqrt{m})$ and $-\varepsilon''(1+m+2\sqrt{m})$) are different modulo \mathfrak{p}^5 each other. Then we get D_4 -extensions as follows:

$$\begin{split} A_1 &= \{ \mathbf{Q}_2(\sqrt{1+\sqrt{2}}\,,\sqrt{-1}),\,\mathbf{Q}_2(\sqrt{3+\sqrt{2}}\,,\sqrt{-1}),\\ \mathbf{Q}_2(\sqrt{\sqrt{2}}\,,\sqrt{-1}),\,\mathbf{Q}_2(\sqrt{3\sqrt{2}}\,,\sqrt{-1}) \},\\ A_2 &= \{ \mathbf{Q}_2(\sqrt{\sqrt{-2}}\,,\sqrt{-1}),\,\mathbf{Q}_2(\sqrt{3\sqrt{-2}}\,,\sqrt{-1}) \},\\ B_1 &= \{ \mathbf{Q}_2(\sqrt{1+\sqrt{-2}}\,,\sqrt{-5}),\,\mathbf{Q}_2(\sqrt{5+\sqrt{-2}}\,,\sqrt{-5}) \},\\ C_1 &= \{ \mathbf{Q}_2(\sqrt{\sqrt{-2}\,(1+\sqrt{-2})}\,,\sqrt{5}),\\ \mathbf{Q}_2(\sqrt{\sqrt{-2}\,(1+3\sqrt{-2})}\,,\sqrt{5}) \},\\ C_2 &= \{ \mathbf{Q}_2(\sqrt{\sqrt{-10}\,(1+\sqrt{-10})}\,,\sqrt{5}), \end{split}$$