Dihedral Extensions of Degree 8 over the Rational p-adic Fields

By Hirotada NAITO
Department of Mathematics, Faculty of Education, Kagawa University
(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1995)

0. Introduction. We denote by \boldsymbol{Q}_{p} the rational p-adic field for a prime p. It is well-known that there exist only finitely many extensions of a fixed degree over \boldsymbol{Q}_{p} in a fixed algebraic closure of \boldsymbol{Q}_{p} (cf. Weil [4] p. 208). Fujisaki [1] exhibited all extensions over \boldsymbol{Q}_{p} whose Galois group is isomorphic to the quaternion group of order 8. In this note, we shall exhibit all extensions L over \boldsymbol{Q}_{p} whose Galois group is isomorphic to the dihedral group D_{4} of order 8 . We call such extensions D_{4}-extensions. We shall show that there exist no such extension for $p \equiv$ $1 \bmod 4$, one extension for $p \equiv 3 \bmod 4$ and eighteen extensions for $p=2$.

We denote by K the quadratic extension over \boldsymbol{Q}_{p} such that L / K is a cyclic extension of degree 4 . We denote by K_{1} and K_{2} the other two quadratic extensions over \boldsymbol{Q}_{p} in L. We denote by M the compositum of K_{1} and K_{2}. We denote by M_{i} and M_{i}^{\prime} the quadratic extensions over K_{i} in L which are not Galois extensions over $\boldsymbol{Q}_{\boldsymbol{p}}$. We deal with the case of odd primes in § 1 . We exhibit all D_{4}-extensions over \boldsymbol{Q}_{2} in $\S 2$ by getting all such M_{i} and M_{i}^{\prime}.

We remark that Yamagishi [3] computed the number of extensions K over a finite extension k / \boldsymbol{Q}_{p} whose Galois group $\operatorname{Gal}(K / k)$ is isomorphic to a fixed finite p-group (cf. see also cited papers in [3]).

1. The case $p \neq 2$. Let L / \boldsymbol{Q}_{p} be a D_{4} extension. L / \boldsymbol{Q}_{p} has four intermediate fields M_{1}, $M_{1}^{\prime}, M_{2}, M_{2}^{\prime}$ of degree 4 which are not Galois extensions over $\boldsymbol{Q}_{\boldsymbol{p}}$. We see that they are totally and tamely ramified, because p is an odd prime. We see by Serre [2] that \boldsymbol{Q}_{p} has four totally and tamely ramified extensions of degree 4 . Therefore we see that \boldsymbol{Q}_{p} has at most one D_{4}-extension. In the case $p \equiv 1 \bmod 4$, we see that \boldsymbol{Q}_{p} has no D_{4}-extension, because $\boldsymbol{Q}_{p}(\sqrt[4]{p}) / \boldsymbol{Q}_{p}$ is a totally and tamely ramified Galois extension of degree 4. In the case $p \equiv 3 \bmod 4$, we see that $\boldsymbol{Q}_{p}(\sqrt{-1}$, $\sqrt[4]{\boldsymbol{p}}) / \boldsymbol{Q}_{p}$ is a D_{4}-extension.
2. The case $p=2$. Let L / \boldsymbol{Q}_{2} be a Galois extension of degree 8. We see that the Galois group of L / \boldsymbol{Q}_{2} is isomorphic to D_{4} if and only if L contains an intermediate field of degree 4 which is not a Galois extension over \boldsymbol{Q}_{2}. Thus it is sufficient to construct all quadratic extensions over K_{i} which are not Galois extensions over \boldsymbol{Q}_{2}, where K_{i} is a quadratic extension over \boldsymbol{Q}_{2}. We get $M_{i}=K_{i}(\sqrt{\varepsilon})$ for an $\varepsilon \in K_{i}^{\times}$such that $\varepsilon^{\sigma} / \varepsilon$ is not square in K_{i} for the generator σ of the Galois group of $K_{i} / \boldsymbol{Q}_{2}$. We see $M_{i}^{\prime}=K_{i}\left(\sqrt{\varepsilon^{\sigma}}\right), L$ $=K_{i}\left(\sqrt{\varepsilon}, \sqrt{\varepsilon^{\sigma}}\right)$ and $M=K_{i}\left(\sqrt{\varepsilon \varepsilon^{\sigma}}\right)$. So we examine a representative system of $K_{i}^{\times} /\left(K_{i}^{\times}\right)^{2}$. We take all pairs $\left\{\varepsilon, \varepsilon^{\sigma}\right\}$ of the system such that $\varepsilon \not \equiv$ $\varepsilon^{\sigma} \bmod \left(K_{i}^{\times}\right)^{2}$. By putting $L=K_{i}\left(\sqrt{\varepsilon}, \sqrt{\varepsilon^{\sigma}}\right)$, we get all D_{4}-extensions L / \boldsymbol{Q}_{2}.

It is well-known that all quadratic extensions over \boldsymbol{Q}_{2} are $\boldsymbol{Q}_{2}(\sqrt{-1}), \boldsymbol{Q}_{2}(\sqrt{-5}), \boldsymbol{Q}_{2}(\sqrt{5})$, $\boldsymbol{Q}_{2}(\sqrt{2}), \boldsymbol{Q}_{2}(\sqrt{-2}), \boldsymbol{Q}_{2}(\sqrt{10})$ and $\boldsymbol{Q}_{2}(\sqrt{-10})$. Next we examine all possible cases for K_{i}. We denote by \mathbf{o} the ring of integers of K_{i}.

2-1. $\quad K_{i}=\boldsymbol{Q}_{2}(\sqrt{m})$ for $m= \pm 2, \pm 10$.

In this case, $\mathfrak{p}=(\sqrt{m})$ is the prime ideal of K_{i}. We see that all elements of $1+\mathfrak{p}^{5}$ are square in K_{i}. Therefore we get $K_{i}^{\times} /\left(K_{i}^{\times}\right)^{2} \cong(\langle\sqrt{m}\rangle /\langle m\rangle)$ $\times\left(\mathfrak{o}^{\times} /\left\langle 1+m+2 \sqrt{m}, 1+\mathfrak{p}^{5}\right\rangle\right)$ by $1+m+2$ $\sqrt{m}=(1+\sqrt{m})^{2}$. For constructing D_{4}-extensions, it is sufficient to examine elements ε and $\varepsilon \sqrt{m}$, where $\varepsilon=a+b \sqrt{m}$ for $a=1,3,5,7$ and $b=$ $0,1,2,3$. We take ε (resp. $\varepsilon \sqrt{m}$) such that $\varepsilon, \varepsilon^{\sigma}$, $\varepsilon(1+m+2 \sqrt{m})$ and $\varepsilon^{\sigma}(1+m+2 \sqrt{m})$ (resp. $\varepsilon,-\varepsilon^{\sigma}, \varepsilon(1+m+2 \sqrt{m})$ and $-\varepsilon^{\sigma}(1+m+2$ $\sqrt{m})$) are different modulo \mathfrak{p}^{5} each other. Then we get D_{4}-extensions as follows:
$A_{1}=\left\{\boldsymbol{Q}_{2}(\sqrt{1+\sqrt{2}}, \sqrt{-1}), \boldsymbol{Q}_{2}(\sqrt{3+\sqrt{2}}, \sqrt{-1})\right.$,
$\left.\boldsymbol{Q}_{2}(\sqrt{\sqrt{2}}, \sqrt{-1}), \boldsymbol{Q}_{2}(\sqrt{3 \sqrt{2}}, \sqrt{-1})\right\}$,
$A_{2}=\left\{\boldsymbol{Q}_{2}(\sqrt{\sqrt{-2}}, \sqrt{-1}), \boldsymbol{Q}_{2}(\sqrt{3 \sqrt{-2}}, \sqrt{-1})\right\}$, $B_{1}=\left\{\boldsymbol{Q}_{2}(\sqrt{1+\sqrt{-2}}, \sqrt{-5}), \boldsymbol{Q}_{2}(\sqrt{5+\sqrt{-2}}\right.$,
$\sqrt{-5})\}$,
$C_{1}=\left\{\boldsymbol{Q}_{2}(\sqrt{\sqrt{-2}(1+\sqrt{-2})}, \sqrt{5})\right.$,
$\left.\boldsymbol{Q}_{2}(\sqrt{\sqrt{-2}(1+3 \sqrt{-2})}, \sqrt{5})\right\}$,
$C_{2}=\left\{\boldsymbol{Q}_{2}(\sqrt{\sqrt{-10}(1+\sqrt{-10})}, \sqrt{5})\right.$,

