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0. Introduction. We denote by @, the
rational p-adic field for a prime p. It is
well-known that there exist only finitely many
extensions of a fixed degree over @, in a fixed
algebraic closure of @, (cf. Weil [4] p. 208). Fu-
jisaki [1] exhibited all extensions over @, whose
Galois group is isomorphic to the quaternion
group of order 8. In this note, we shall exhibit all
extensions L over @, whose Galois group is iso-
morphic to the dihedral group D, of order 8 We
call such extensions D,-extensions. We shall
show that there exist no such extension for p =
1 mod 4, one extension for p =3 mod 4 and
eighteen extensions for p = 2.

We denote by K the quadratic extension
over @, such that L/K is a cyclic extension of
degree 4. We denote by K, and K, the other two
quadratic extensions over @, in L. We denote by
M the compositum of K; and K, We denote by
M; and M/ the quadratic extensions over K; in L
which are not Galois extensions over @, We
deal with the case of odd primes in § 1. We ex-
hibit all D,-extensions over @, in § 2 by getting
all such M; and M/

We remark that Yamagishi [3] computed the
number of extensions K over a finite extension
k/Q, whose Galois group Gal(K/k) is isomor-
phic to a fixed finite p-group (cf. see also cited
papers in [3]).

1. The case p # 2. Let L/Q, be a D,-
extension. L/ @Q, has four intermediate fields M;,

1, M,, M, of degree 4 which are not Galois ex-
tensions over @,. We see that they are totally
and tamely ramified, because p is an odd prime.
We see by Serre [2] that @, has four totally and
tamely ramified extensions of degree 4. Therefore
we see that @, has at most one D,-extension. In
the case p = 1mod4, we see that @, has no
D,-extension, because Q, W)/ Q, is a totally and
tamely ramified Galois extension of degree 4. In
the case p = 3mod4, we see that Q,(yY— 1,
VE)/Q,, is a D,-extension.

2. The case p = 2. Let L/Q, be a Galois
extension of degree 8. We see that the Galois
group of L/Q, is isomorphic to D, if and only if
L contains an intermediate field of degree 4
which is not a Galois extension over @,. Thus it
is sufficient to construct all quadratic extensions
over K; which are not Galois extensions over @,,
where K; is a quadratic extension over @, We
get M, = K,;(e) for an ¢ € K;* such that &’/¢
is not square in K; for the generator o of the
Galois group of K;/Q, We see M;= K,(/a—a), L
= K,(Je , /s_a) and M = K,(/e’). So we ex-
amine a representative system of K,* /(K;)’. We
take all pairs {e, e’} of the system such that ¢ #
¢’mod (K,)*. By putting L = K,(/e , /67), we
get all D,-extensions L/ Q,.

It is well-known that all quadratic exten-
sions over @, are Q,(yY— 1), Q,(y—5), Q,(/5),
Q,v2), Q,(V— 2), Q,(y10) and Q,(y— 10).
Next we examine all possible cases for K, We
denote by o the ring of integers of K;.

2-1. K, = Q,(Vm) form = £ 2, £ 10.

In this case, p = (Ym) is the prime ideal of
K,. We see that all elements of 1 + ps are square
in K, Therefore we get K, /(K;)* = ({/m)/<m))
X /1 +m+2ym,1+p>)by1l+m+2
Vm=QQ+ x/ﬁ)z. For constructing D,-extensions,
it is sufficient to examine elements € and evm,
where e=a+ bym for a=1,3,5,7 and b=
0,1,2,3. We take e(resp. eym) such that ¢, &°,
eQ+m+2ym) and A + m + 2 Vm) (resp.
e, — e, e(l+m~+2ym) and — A +m+ 2
Vm)) are different modulo p° each other. Then
we get D,-extensions as follows:

A =1Q,01+v2,/=1), (3 +v2,/=1),
Q.(V2,v=1), Q,(/3y2, y=1)},

A, =1{Q,(V=2,V—1), Q,3/—2, /= 1)},

B, ={Q,(/1+V=2,V=5), (5 + V-2,
V—5)},

C,=1{Q,WV—20 + V- 2), v5),
Q,(V=2Q1 + 3/=2), V5)},

C,= {Q,(/y=— 10 + /= 10), v5),




