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Abstract: We prove a Lusternik-Schnirelmann type theorem for locally Lipschitz functionals,

by replacing the notion of Fr6chet-differentiability with the Clarke generalized gradient. We apply

our abstract framework to solve a multivalued second order periodic problem generated by

non-smooth mappings.
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1. Introduction. In the theory of differen-
tial equations two of the most important tools for
proving the existence of solutions are the Moun-
tain Pass Theorem of Ambrosetti-Rabinowitz and
the Lusternik-Schnirelmann Theorem. These ab-
stract results apply to the case where the solu-
tions of the given problem are critical points of
an appropriate functional of energy f, which is
supposed to be real and of class C 1, defined on a

real Banach space. The case when f fails to be
differentiable arises frequently in non-smooth
mechanics. In [8] we proved a generalization of
the Mountain Pass Theorem for locally Lipschitz
functionals. The aim of this paper is to give a
variant of the Lusternik-Schnirelmann Theorem
for such functionals.

We recall in what follows the main prop-
erties of locally Lipschitz functionals. For proofs
and further details see [2] or [3].

Throughout, X will be a real Banach space.
Let X* be its dual and (x*, x), for x X, x
X* denote the duality pairing between X* and
X. Let f :XR be a locally Lipschitz (f
Lipton(X, R)). For each x, v X, we define the
generalized directional derivative at x in the
direction v of f as

f(y + v) f(y)
f(x, v) lim sup 2

Y’-*X
",0

The generalized gradient (the Clarke subdif-
ferential) of f at x is the subset Of(x) of X* de-
fined by

8f(x) {x* X* ;f(x, v) > <x*, v>,
for all v X}

If f is convex, 0f(x) coincides with the sub-
differential of f at x in the sense of convex
analysis.

The fundamental properties of the Clarke
subdifferential are"

a) For each x X, Of(a) is a nonempty
convex weak-" compact subset of X*.

b) For each x, v X, we have

f O(x, v) max{ <x*, v> x 8f(x) }
c) The set-valued mapping x Of(x) is up-

per semi-continuous in the sense that for each

Xo X, s > O, v X, there is c3 > 0 such that
for each x Of(x) with IIx--Xo[l< 8, there
exists Xo* 8f(Xo) such that I<x*--Xo*, v>
<s.

d) The function fo(.,.) is upper semi-
continuous.

e) If f achieves a local minimum or max-
imum at x, then 0 Of(x).

f) The function
/ (x) min x

x* Of(x)

exists and is lower semi-continuous.
Definition 1. A point u X is said te be a

critical point of f Lipo (X, R) /f 0 8f(u),
namely f(u, v) > 0 for every v X. A real num-
ber c is called a critical value off if there is a cri-

tical point u X such that f(u) c.
2. The main result. Let Z be a discrete

subgroup of the real Banach space X, that is
inf IIzl[> o

zz\{o)
A function f" X--*R is said to be Z-

periodic if f(x A- z) --f(x), for every x X and


