Positive Solution of Some Nonlinear Elliptic Equation with Neumann Boundary Conditions*)

By Nicolae TARFULEA
Department of Mathematics, University of Craiova, Romania (Communicated by Kiyosi ITô, M. J. A., Sept. 12, 1995)

Abstract

In this note we show that there exists Λ_{0} such that, for every $\lambda \in\left(0, \Lambda_{0}\right)$, the problem: $-\Delta u=\lambda u^{q}+W(x) u^{p}$ in $\Omega, u>0$ in $\Omega, \frac{\partial u}{\partial n}=0$ on $\partial \Omega$, where $\Omega \subset R^{N}$ is a bounded convex domain with smooth boundary, $0<q<1<p$ and $W \in C^{1}(\bar{\Omega})$, has a solution u_{λ} iff $\int_{\Omega} W(x) d x<0$. Moreover: $\left\|u_{\lambda}\right\|_{\infty} \rightarrow 0$ as $\lambda \downarrow 0$.

1. Introduction. In this note we study the Neumann problem for a class of semilinear elliptic equations.
Let $\Omega \subset R^{N}$ be a bounded convex domain with smooth boundary $\partial \Omega$ and consider the semilinear elliptic problem:

$$
\left(\mathbf{1}_{\lambda}\right) \begin{cases}-\Delta u=\lambda u^{q}+W(x) u^{p} & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

where $0<q<1<p$ and $W \in C^{1}(\bar{\Omega})$. The influence of negative part of W is displayed in the following condition:

$$
\begin{equation*}
\int_{\Omega} W(x) d x<0 \tag{*}
\end{equation*}
$$

As it turns out, condition (*) was inspired by a corresponding necessary condition derived in [2]. The corresponding Dirichlet problem:

$$
\begin{cases}-\Delta u=\lambda u^{q}+u^{p} & x \in \Omega \\ u>0 & x \in \Omega \\ u=0 & x \in \partial \Omega\end{cases}
$$

with $0<q<1<p$, has been extensively studied in the paper of Ambrosetti, Brezis and Cerami [1]. Moreover, by the results of Boccardo, Escobedo and Peral [4], these results are extended for the p-laplacian. The purpose of the present note is to study $\left(1_{\lambda}\right)$ and our main result is the following:

Theorem 1.1. If $(*)$ is satisfied, then there exists $\Lambda_{0} \in R, \Lambda_{0}>0$, such that, for all $\lambda \in$ ($0, \Lambda_{0}$), problem. ($\mathbf{1}_{\lambda}$) has a solution u_{λ} and

[^0]$\left\|u_{\lambda}\right\|_{\infty} \rightarrow 0$ as $\lambda \downarrow 0$.
The proof of the above theorem uses only elementary tools. It is based on the construction of explicit sub and super solutions for ($\mathbf{1}_{\lambda}$) and the application of the Sattinger results (see [6]).

2. The existence result.

Lemma 2.1. Suppose there exists $\lambda>0$ such that the problem $\left(\mathbf{1}_{\lambda}\right)$ has a solution \boldsymbol{u}_{λ}. Then necessarily the condition $(*)$ must hold.

Proof. For each $\varepsilon>0$ put:

$$
f_{\varepsilon}\left(u_{\lambda}\right)=\frac{1}{1-p}\left(u_{\lambda}+\varepsilon\right)^{1-p}
$$

We observe that:

$$
\begin{aligned}
&-\Delta f_{\varepsilon}\left(u_{\lambda}\right)=\left(u_{\lambda}+\varepsilon\right)^{-p}\left(\lambda u_{\lambda}^{q}+W(x) u_{\lambda}^{p}\right) \\
&+p\left(u_{\lambda}+\varepsilon\right)^{-p-1}\left|\nabla u_{\lambda}\right|^{2} \text { in } \Omega,
\end{aligned}
$$

$$
\frac{\partial f_{\varepsilon}\left(u_{\lambda}\right)}{\partial n}=\left(u_{\lambda}+\varepsilon\right)^{-p} \frac{\partial u_{\lambda}}{\partial n}=0 \quad \text { on } \partial \Omega
$$

Hence:
$-\int_{\Omega} W(x) \frac{u_{\lambda}^{p}}{\left(u_{\lambda}+\varepsilon\right)^{p}} d x$
$=\int_{\Omega} p\left(u_{\lambda}+\varepsilon\right)^{-p-1}\left|\nabla u_{\lambda}\right|^{2} d x+\lambda \int_{\Omega} \frac{u_{\lambda}^{p}}{\left(u_{\lambda}+\varepsilon\right)^{p}} d x$.
It follows that there exists $\delta>0$ such that:

$$
\int_{\Omega} W(x) \frac{u_{\lambda}^{p}}{\left(u_{\lambda}+\varepsilon\right)^{p}} d x \leq-\delta<0, \text { for all } \varepsilon \in(0,1)
$$

Letting $\varepsilon \rightarrow 0$, we have:

$$
\int_{\Omega} W(x) d x \leq-\delta<0
$$

Throughout, in the following, we suppose that the condition ($*$) is satisfied.

Lemma 2.2. For all $\lambda>0$, there exists a subsolution \underline{u}_{λ}, strictly positive in Ω, for the problem ($\mathbf{1}_{\lambda}$).

[^0]: *) Partially supported by a CNCSU-Grant n° $132 \backslash 95$.

