Positive Solution of Some Nonlinear Elliptic Equation with Neumann Boundary Conditions*)

By Nicolae TARFULEA

Department of Mathematics, University of Craiova, Romania (Communicated by Kiyosi ITÔ, M. J. A., Sept. 12, 1995)

Abstract: In this note we show that there exists Λ_0 such that, for every $\lambda \in (0, \Lambda_0)$, the problem: $-\Delta u = \lambda u^q + W(x)u^p$ in Ω , u > 0 in Ω , $\frac{\partial u}{\partial n} = 0$ on $\partial \Omega$, where $\Omega \subseteq \mathbb{R}^N$ is a bounded convex domain with smooth boundary, 0 < q < 1 < p and $W \in C^1(\bar{\Omega})$, has a solution u_1 iff $\int_0^\infty W(x) dx < 0. \text{ Moreover: } \|u_\lambda\|_\infty \to 0 \text{ as } \lambda \downarrow 0.$

1. Introduction. In this note we study the Neumann problem for a class of semilinear elliptic equations.

Let $\Omega \subseteq \mathbb{R}^N$ be a bounded convex domain with smooth boundary $\partial \Omega$ and consider the semilinear elliptic problem:

the problem:
$$(\mathbf{1}_{\lambda}) \begin{cases} -\Delta u = \lambda u^{q} + W(x)u^{p} & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial \Omega, \end{cases}$$

where 0 < q < 1 < p and $W \in C^1(\bar{\Omega})$. The influence of negative part of W is displayed in the following condition:

$$\int_{Q} W(x) dx < 0.$$

As it turns out, condition (*) was inspired by a corresponding necessary condition derived in [2]. The corresponding Dirichlet problem:

$$\begin{cases} -\Delta u = \lambda u^q + u^b & x \in \Omega \\ u > 0 & x \in \Omega \\ u = 0 & x \in \partial\Omega, \end{cases}$$
 with $0 < q < 1 < p$, has been extensively stu-

died in the paper of Ambrosetti, Brezis and Cerami [1]. Moreover, by the results of Boccardo, Escobedo and Peral [4], these results are extended for the p-laplacian. The purpose of the present note is to study (1) and our main result is the following:

Theorem 1.1. If (*) is satisfied, then there exists $\Lambda_0 \in R$, $\Lambda_0 > 0$, such that, for all $\lambda \in$ $(0, \Lambda_0)$, problem (1_{λ}) has a solution u_{λ} and

$$\|u_{\lambda}\|_{\infty} \to 0$$
 as $\lambda \downarrow 0$.

The proof of the above theorem uses only elementary tools. It is based on the construction of explicit sub and super solutions for (1_1) and the application of the Sattinger results (see [6]).

2. The existence result.

Lemma 2.1. Suppose there exists $\lambda > 0$ such that the problem (1_1) has a solution u_1 . Then necessarily the condition (*) must hold.

Proof. For each $\varepsilon > 0$ put:

$$f_{\varepsilon}(u_{\lambda}) = \frac{1}{1-p} (u_{\lambda} + \varepsilon)^{1-p}.$$

We observe that:

we observe that:

$$-\Delta f_{\varepsilon}(u_{\lambda}) = (u_{\lambda} + \varepsilon)^{-p} (\lambda u_{\lambda}^{q} + W(x)u_{\lambda}^{p}) + p(u_{\lambda} + \varepsilon)^{-p-1} |\nabla u_{\lambda}|^{2} \text{ in } \Omega,$$

$$\frac{\partial f_{\varepsilon}(u_{\lambda})}{\partial n} = (u_{\lambda} + \varepsilon)^{-p} \frac{\partial u_{\lambda}}{\partial n} = 0 \quad \text{on } \partial\Omega.$$

$$-\int_{\Omega} W(x) \frac{u_{\lambda}^{p}}{(u_{\lambda} + \varepsilon)^{p}} dx$$

$$= \int_{\Omega} p(u_{\lambda} + \varepsilon)^{-p-1} |\nabla u_{\lambda}|^{2} dx + \lambda \int_{\Omega} \frac{u_{\lambda}^{p}}{(u_{\lambda} + \varepsilon)^{p}} dx.$$

It follows that there exists $\delta > 0$ such that:

$$\int_{\Omega} W(x) \frac{u_{\lambda}^{p}}{(u_{\lambda} + \varepsilon)^{p}} dx \le -\delta < 0, \text{ for all } \varepsilon \in (0,1).$$

Letting $\varepsilon \to 0$, we have:

$$\int_{\mathcal{Q}} W(x) dx \le -\delta < 0.$$

Throughout, in the following, we suppose that the condition (*) is satisfied.

Lemma 2.2. For all $\lambda > 0$, there exists a subsolution u_{λ} , strictly positive in Ω , for the problem (1_i) .

^{*)} Partially supported by a CNCSU-Grant n° $132 \setminus 95$.