Wavelet Transforms Associated to a Principal Series Representation of Semisimple Lie Groups. II

By Takeshi KAWAZOE

Department of Mathematics, Keio University (Communicated by Kiyosi ITÔ, M. J. A., Sept. 12, 1995)

1. Introduction. Let G be a noncompact connected semisimple Lie group with finite center and P = MAN a parabolic subgroup of G. Let π_{λ} $= \operatorname{Ind}_{P}^{G}(1 \otimes e^{\lambda} \otimes 1)$ ($\lambda \in \mathfrak{a}_{c}^{*}$) denote a principal series representation of G and $(\pi_{\lambda}, L^{2}(\bar{N}, e^{-2\Im\lambda(H(\bar{n}))}d\bar{n})$ ($\bar{N} = \theta(N)$) the noncompact picture of π_{λ} . Let σ_{ω} denote an irreducible unitary representation of \bar{N} corresponding to $\omega \in \bar{n}_{c}^{*}$ and (S, ds) a subset of MA with measure ds. In the previous paper [3] we supposed that there exists a $\psi \in \mathscr{S}'(\bar{N})$ satisfying the following admissible condition: for all $\omega \in V_{T}'$

(i)
$$\sigma_{\omega}(\psi)\sigma_{\omega}(\psi)^{*} = n_{\phi}(\omega)I$$
,
(ii) $0 < \int_{S} n_{\phi}(Ad(s)\omega)ds = c_{S,\phi} < \infty$,

where $c_{s,\phi}$ is independent of ω (see [3] for the notations). Then for all such ψ we can deduce the inversion formula:

$$f(x) = c_{s,\psi}^{-1} \iint_{\bar{N} \times S} \langle f, \pi_{-i\rho}(\bar{n}s)\psi \rangle \cdot \\ \pi_{-i\rho}(\bar{n}s)\psi(x)d\bar{n}ds \quad \text{for all } f \in \mathscr{S}(\bar{N})$$

where $\langle \cdot, \cdot \rangle$ is the inner product of $L^2(\bar{N})$. A number of well-known examples of wavelet transforms arises from this scheme through the explicit form of φ . However, in the case of G =SL(n+2, R) $(n \ge 1)$ and $\bar{N} \cong H_n$, the (2n+1)dimensional Heisenberg group, the above formula does not cover the three examples constructed by Kalisa and Torrésani (see [4, IV]). Therefore, in order to obtain a widespread application we need to generalize this formula. In this paper we suppose that S is an arbitrary measurable set with map $l: S \to G$ and then we shall consider a distribution vector φ in $\mathscr{S}'(\bar{N})$ which depends on $s \in S$.

2. Main theorem. We retain the notations in [3] except that (S, ds) is an arbitrary measurable set with map $l: S \to G$. Let Ψ be a family of $\psi_s \in \mathscr{S}'(\bar{N})$ with parameter $s \in S$. We call the quartet $\mathfrak{A} = (\lambda, S, l, \Psi)$ satisfies the admissible condition if for all $\omega \in V'_T$ and $F \in L^2(\mathbf{R}^k)$

$$\int_{S} \sigma_{\omega}(\pi_{\lambda}(l(s)\psi_{s}))\sigma_{\omega}(\pi_{\lambda}(l(s)\psi_{s}))^{*}Fds = c_{\mathfrak{A}}F,$$

where σ_{ω} is realized on $L^2(\mathbf{R}^k)$ (see §3) and $c_{\mathfrak{A}}$ is independent of ω .

Theorem 1. Let $\mathfrak{A} = (\lambda, S, l, \Psi)$ satisfy the admissible condition. Then,

$$f(x) = c_{\mathfrak{A}}^{-1} \int \int_{\bar{N} \times S} \langle f, \pi_{\lambda}(\bar{n}l(s))\psi_{s} \rangle \cdot$$

 $\pi_{\lambda}(\bar{n}l(s))\psi_s(x)d\bar{n}ds$ for all $f \in \mathcal{S}(N)$. *Proof.* As shown in [2] it is enough to prove that

 $\int_{S} \|\langle f, \pi_{\lambda}(\cdot) \Psi_{s} \rangle \|_{L^{2}(\overline{N})}^{2} ds = c_{\mathfrak{A}} \|f\|_{L^{2}(\overline{N})}^{2},$

where $\Psi_s = \pi_{\lambda}(l(s))\psi_s$. Since $\sigma_{\omega}(\langle f, \pi_{\lambda}(\cdot)\Psi_s \rangle)$ = $\sigma_{\omega}(f)\sigma_{\omega}(\Psi_s)^*$, it follows from the Plancherel formula for $L^2(\bar{N})$ that

$$\begin{split} &\int_{S} \| \langle f, \pi_{\lambda}(\cdot)\psi_{s} \rangle \|_{L^{2}(\overline{N})}^{2} ds \\ &= \int_{S} \int_{V_{T}'} \| \sigma_{\omega}(f)\sigma_{\omega}(\Psi_{s})^{*} \|_{HS}^{2} \mu(\omega) d\omega ds \\ &= \int_{V_{T}} \operatorname{tr} \Big(\sigma_{\omega}(f) \int_{S} \sigma_{\omega}(\Psi_{s})^{*} \sigma_{\omega}(\Psi_{s}) ds \sigma_{\omega}(f)^{*} \Big) \mu(\omega) d\omega \\ &= c_{\mathfrak{A}} \| f \|_{L^{2}(\overline{N})}^{2}. \end{split}$$

3. Admissible condition. In what follows we assume that

(A0)
$$l(S) \subset MA$$
,

and we shall obtain a sufficient condition of $\mathfrak{A} = (\lambda, S, l, \Psi)$ under which \mathfrak{A} is admissible. Let \mathfrak{q} be a polarizing subalgebra for all $\omega \in V'_T$ and Q the corresponding analytic subgroup of \overline{N} . We put $k = \operatorname{codimq}, \chi_{\omega}(\exp Y) = e^{2\pi i \omega(Y)} (Y \in \mathfrak{q}),$ and $\overline{n} = \exp X(\overline{n})\gamma(t(\overline{n})) (X(\overline{n}) \in \mathfrak{q}, t(\overline{n}) \in \mathbb{R}^k)$ where $\gamma : \mathbb{R}^k \to \overline{N}$ is a cross-section for $Q \setminus \overline{N}$. Then $\sigma_{\omega} = \operatorname{Ind}_Q^N(\chi_{\omega})$ and it is realized on $L^2(\mathbb{R}^k)$ as $\sigma_{\omega}(\overline{n})F(t) = \chi_{\omega}(X(\gamma(t)\overline{n}))F(t(\gamma(t)\overline{n}))$ (cf. [1, p.125]). Here we recall that $l(s) \in MA$ and a weak Malcev basis consists of root vectors for (G, A). Thus Ad(l(s)) stabilizes Q and $Q \setminus \overline{N}$ respectively. Here we suppose that

(A1) q is ideal,

¹⁹⁹¹ Mathematics Subject Classification. Primary 22E30; Secondary 42C20.