Quadratic Relations between Logarithms of Algebraic Numbers

By Damien ROY*) and Michel Waldschmidt**)

(Communicated by Shokichi IY^NAG^, M. J. ^., Sept. 12, 1995)

So far, the four exponentials conjecture has been solved only in one special case, namely when the transcendence degree of the field which is spanned by the four logarithms is 1 . We produce a new proof of this statement, and we announce a generalization: we replace the determinant of a 2×2 matrix by any homogeneous polynomial of degree 2 .
§1. The results. The following statement provides a solution of the four exponentials conjecture in transcendence degree 1 .

Theorem 1. Let x_{1} and x_{2} be two complex numbers which are linearly independent over \boldsymbol{Q}, and similarly let y_{1}, y_{2} be two \boldsymbol{Q}-linearly independent complex numbers. Assume that the field $\boldsymbol{Q}\left(x_{1}, x_{2}\right.$, y_{1}, y_{2}) has transcendence degree 1 over \boldsymbol{Q}. Then one at least of the four numbers

$$
e^{x_{1} y_{1}}, e^{x_{1} y_{2}}, e^{x_{2} y_{1}}, e^{x_{2} y_{2}}
$$

is transcendental.
For a proof of this result, we refer to [1] Cor. 7 and [6] Cor. 4.

Our is goal to introduce a sketch of new proof, where Gel'fond's transcendence criterion [3] (Chap. III, §4, lemma VII) is replaced by a diophantine approximation result due to Wirsing [8] §3. This new argument allows us to use Laurent's interpolations determinants [4] §6.

A generalization of theorem 1 can be achieved with the same arguments. Here we merely state the result; a complete proof (of a more general statement) will be given in another paper.

We denote by \mathscr{L} the \boldsymbol{Q}-vector space of logarithms of algebraic numbers:
$\mathscr{L}=\exp ^{-1}\left(\overline{\boldsymbol{Q}}^{\times}\right)=\left\{z \in \boldsymbol{C} ; e^{z} \in \overline{\boldsymbol{Q}}^{\times}\right\} \subset \boldsymbol{C}$, where $\overline{\boldsymbol{Q}}$ is the algebraic closure of \boldsymbol{Q} in \mathbf{C} and $\overline{\boldsymbol{Q}}^{\times}$is the multiplicative group of non-zero algebraic numbers.

Theorem 2. Let $V \subseteq \mathbf{C}^{n}$ be the set of zeroes in \boldsymbol{C}^{n} of a non-zero homogeneous polynomial

[^0]$P \in \boldsymbol{Q}\left[X_{1}, \ldots, X_{n}\right]$ of degree ≤ 2 and let $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ be a poinl in V with coordinales in \mathscr{L}. Assume that the field $\boldsymbol{Q}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ has transcendence degree 1 over \boldsymbol{Q}. Then $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is contained in a vector subspace of \boldsymbol{C}^{n} which is defined over \boldsymbol{Q} and contained in V.

Theorem 1 is the special case of Theorem 2 when P is $X_{1} X_{4}-X_{2} X_{3}$ with $n=4$.
§2. Wirsing's theorem. When α is a complex algebraic number of degree $d=[\boldsymbol{Q}(\alpha): \boldsymbol{Q}]$, we denote by $\mathrm{M}(\alpha)$ its Mahler's measure, which is related to its absolute logarithmic height $\mathrm{h}(\alpha)$ by

$$
d \mathrm{~h}(\alpha)=\log \mathrm{M}(\alpha)
$$

The main tool of this paper is the following theorem of Wirsing [8]:

Theorem 3. Let θ be a complex transcendental number. For any inleger $D \geq 2$ there exist infinitely many algebraic numbers α which satisfy

$$
[\boldsymbol{Q}(\alpha): \boldsymbol{Q}] \leq D \text { and }|\theta-\alpha| \leq \mathrm{M}(\alpha)^{-D / 4}
$$

§3. Laurent's interpolation determinants. A proof of the six exponentials theorem which does not rest on Dirichlet's box principle has been given by M. Laurent in [4]: he replaces the construction of an auxiliary function (which involves Thue-Siegel lemma) by an explicit determinant.

The following result is a variant of Proposition 9.5 of [7]: here, we include derivatives.

Proposition. Let L be a positive integer, E and U be positive real numbers with $0<\log E$ $\leq 4 U$. For $1 \leq \lambda \leq L$, let φ_{λ} be a complex function of one variable, $b_{\lambda 1}, \ldots, b_{\lambda L}$ be complex numbers and M_{λ} a real number; further, for $1 \leq \mu \leq L$, let ζ_{μ} be a complex number and σ_{μ} be a non-negative integer. Assume that, for $1 \leq \lambda \leq L$, we have

$$
\begin{gathered}
M_{\lambda} \geq \log \sup _{|z|=E} \max _{1 \leq \mu \leq L}\left|\left((d / d z)^{\sigma_{\mu}} \varphi_{\lambda}\right)\left(z \zeta_{\mu}\right)\right| \\
\text { and } M_{\lambda} \geq \log \max _{1 \leq \mu \leq L}\left|b_{\lambda \mu}\right| .
\end{gathered}
$$

Finally, let ε be a complex number with $|\varepsilon| \leq e^{-U}$. Then the logarithm of the absolute value of the determinant

$$
\Delta=\operatorname{det}\left((d / d z)^{\sigma_{\mu}} \varphi_{\lambda}\left(\zeta_{\mu}\right)+\varepsilon b_{\lambda \mu}\right)_{1 \leq \lambda, \mu \leq L}
$$

[^0]: *) Université d'Ottawa, Faculté des Sciences, Canada.
 **) Institut de Mathématiques de Jussieu, France.

