Gamma Factors for Generalized Selberg Zeta Functions

By Yasuro GON

Department of Mathematical Sciences, University of Tokyo (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1995)

1. Introduction. Let K be an algebraic number field such that $[K:\mathbf{Q}] < \infty$, and $\zeta_K(s)$ be the Dedekind zeta function of K. The completed Dedekind zeta function $\widehat{\zeta_K}(s) = \zeta_K(s) \cdot \Gamma_K(s)$ has the symmetric functional equation: $\widehat{\zeta_{\kappa}}(1-s) =$ $\widehat{\zeta_{\kappa}}(s)$. Here, the gamma factor is:

 $\Gamma_{\underline{K}}(s) = |D_{K}|^{\frac{s}{2}} \Gamma_{\mathbf{R}}(s)^{r_{1}(K)} \Gamma_{\mathbf{C}}(s)^{r_{2}(K)},$ where, D_K is the discriminant of K, $r_1(K)$ and $r_2(K)$ are the number of real and complex places of K respectively. We can consider $\Gamma_{\mathbf{R}}(s) = \pi^{-\frac{s}{2}}$ $\Gamma(\frac{s}{2})$, $\Gamma_{\mathbf{C}}(s) = \Gamma_{\mathbf{R}}(s)\Gamma_{\mathbf{R}}(s+1)$ as a "basis" of gamma factors corresponding to infinite places.

In this article we consider "gamma factors" for Selberg zeta functions. (cf. Vignéras[6], Sarnak [5], Kurokawa[3]). We give a neat expression of "gamma factors" as in the case of Dedekind zeta functions. (Theorem 1) Furthermore, we obtain a simple proof of the functional equation of the Ruelle zeta function R(s) for a compact 2ndimensional real hyperbolic space X (Theorem 2):

 $R(s) \cdot R(-s) = (-4 \sin^2(\pi s))^{n \cdot (-1)^{n-1} vol(X)}$ The author would like to express his pro-

found gratitude to Professor N. Kurokawa for his

valuable suggestions and encouragement.

2. Selberg zeta functions. Let G be a connected semisimple Lie group of rank one with finite conter, K be a maximal compact subgroup of G. Let Γ be a co-compact torsion-free discrete subgroup of G. Then $X = \Gamma \setminus G / K$ is a compact locally symmetric space of rank one. For a given irreducible unitary representation τ of K, we denote by $Z_{\tau}(s)$ the Selberg zeta functions of X

For example, let X be a compact Riemann surface of genus $g \geq 2$. Then $X = \Gamma \setminus H$ where $H = SL(2, \mathbf{R})/SO(2)$ is the upper half plane, and Γ is the fundamental group $\pi_1(X)$ discretely embedded in $SL(2, \mathbf{R})$. For trivial τ , the Selberg zeta function Z(s) of a compact Riemann surface is defined by the following Euler products:

with K-type τ as is introduced by Wakayama [7].

$$Z(s)=\prod_{p\in P_{\Gamma}}\prod_{k=0}^{\infty}\left(1-N(p)^{-(k+s)}\right).$$
 Here P_{Γ} is the set of all primitive hyperbolic con-

jugacy classes, and the norm function N(p) = $\max\{|\text{ eigenvalues of }p|^2\}$. For other rank one Lie groups and non-trivial au, $Z_{ au}(s)$ is defined by similar but more complicated Euler products.

Selberg-Gangolli[2]-Wakayama[7] have shown that:

 $Z_{\tau}(s)$ is meromorphic on C, and tells informations about τ -spectrum:

 $\hat{G}_{\tau} = \{ \pi \in \hat{G} \mid m_{\Gamma}(\pi) > 0, \ \pi \mid_{K} \ni \tau \},$ where $m_r(\pi)$ is the multiplicity of a unitary representation π of G in the right regular representation π_{Γ} of G on $L^2(\Gamma \setminus G)$. (and in our case $m_{\Gamma}(\pi)$ is finite for all π .)

 $Z_{\tau}(s)$ has moreover the functional equation:

$$(1) Z_{\tau}(2\rho_0 - s) = \exp\left(\int_0^{s-\rho_0} \Delta_{\tau}(t) dt\right) Z_{\tau}(s).$$

where, $ho_0 > 0$ is a constant depending only on G and $\Delta_{\tau}(t)$ is the "Plancherel" density with K-type τ , whose explicit formula is found in [7]. Hereafter we use **renormalized** ρ_0 and $\Delta_{\tau}(t)$ like as [4].

Gamma factors. we shall express the exponential factor of the functional equation (1) as $\Gamma_{ au}(s)/\Gamma_{ au}(2
ho_0-s)$ by the "gamma factor" $\Gamma_{\tau}(s)$ so that the completed Selberg zeta function $\widehat{Z_{ au}}(s) = Z_{ au}(s) arGamma_{ au}(s)$ will satisfy the symmetric functional equation:

$$\widehat{Z}_{\tau}(2\rho_0 - s) = \widehat{Z}_{\tau}(s)$$

If $\dim X$ is odd, the "Plancherel" density $\Delta_{\tau}(t)$ is a polynomial and "gamma factor" is trivial. Hereafter we suppose that $\dim X$ is even, i.e. $G = SO(2n, 1), SU(n, 1), Sp(n, 1), F_4$ the "Plancherel" density is given by $\Delta_{\tau}(t) =$ $\sum_{\text{finite sun}} (\text{odd polynomial}) \pi (\tan(\pi t))^{\pm 1}$.

Definition 3.1. We define two "Plancherel polynomials" $P_{\tau}(t)$ and $Q_{\tau}(t)$ attached to τ by, $(-1)^{\dim X/2} vol(X)^{-1} \Delta_{\tau}(t) =$

$$(-1)^{-m} vol(X) \quad \Delta_{\tau}(t) = -P_{\tau}(t)\pi \cot(\pi t) + Q_{\tau}(t)\pi \tan(\pi t).$$

These polynomials are odd polynomials of degree