Triangles and Elliptic Curves. V

By Takashi ONO
Department of Mathematics, The Johns Hopkins University, U.S.A.
(Communicated by Shokichi IyAn^G^, M. J. ^., Sept. 12, 1995)

This is a continuation of my series of papers [4] each of which will be referred to as (I), (II), (III), (IV) in this paper. Let k be a field of characteristic not 2 . We shall fix once for all a complete set \mathcal{M} of representatives of $k^{\times} /\left(k^{\times}\right)^{2}$. For $M \in \mathcal{M}$ and an element $\lambda \neq 0,1$ of k, consider the set of k-rational points (0.1) $E(M, \lambda M)(k)=\left\{p=\left[x_{0}, x_{1}, x_{2}, x_{3}\right]\right.$;

$$
\left.x_{0}^{2}+M x_{1}^{2}=x_{2}^{2}, x_{0}^{2}+\lambda M x_{1}^{2}=x_{3}^{2}\right\}
$$

of the elliptic curve $E(M, \lambda M)$ and the bunch of (0.1) taken over \mathcal{M} :
(0.2) $\boldsymbol{E}(\lambda ; k)=\bigcup_{M \in \mathcal{M}} E(M, \lambda M)(k) .{ }^{1)}$

Denote by D the set of four points $[1,0, \pm 1, \pm 1]$ in P^{3}. For each λ, M, the set D is a subgroup of $E(M, \lambda M)(k)$ consisting of points P such that $2 P=\mathscr{O}=[1,0,1,1] ; D \approx \boldsymbol{Z} / 2 \boldsymbol{Z} \times \boldsymbol{Z} / 2 \boldsymbol{Z}$. From the definition of \mathcal{M} we find that
(0.3) $\quad E(M, \lambda M)(k) \cap E\left(M^{\prime}, \lambda M^{\prime}\right)(k)=D, \quad M \neq M^{\prime}$. In other words, the union in (0.2) is "disjoint" up to elements of D.

In this paper, we shall introduce a surjective map
(0.4) $\quad c: \boldsymbol{E}(\lambda ; k) \rightarrow P^{1}(k)$
which is an analogue of the branched covering of Riemann surfaces. We shall also examine this map for special fields k including some local and global fields in number theory.
§1. Map c. For $P=\left[x_{0}, x_{1}, x_{2}, x_{3}\right] \in \boldsymbol{E}(\lambda ; k)$ in (0.2), put
(1.1)

$$
\pi(P)=\left[x_{2}, x_{3}, x_{0}\right]
$$

Since each $M \in \mathcal{M}$ is $\neq 0, \pi(P)$ is a point in $P^{2}(k)$. For $\lambda \neq 0,1$ of k, let $C(\lambda)$ be the conic defined by
(1.2) $C(\lambda)=\left\{[x, y, z] \in P^{2}(\bar{k}) ; y^{2}-z^{2}=\lambda\left(x^{2}-z^{2}\right)\right\}$.
${ }^{1)}$ As usual, we write $X(k)$ or X_{k} for the k-rational subset of a set X of geometric objects. We also use X for $X(\bar{k})$ occasionally where \bar{k} denotes the algebraic closure of k. E.g., $X=E(M, \lambda M)$ is an elliptic curve in $P^{3}=P^{3}(\bar{k})$ and (0.1) is the subset of k-rational points of X. On the other hand, since the set \mathcal{M} is not necessarily finite, the set $\boldsymbol{E}(\lambda ; k)$ in (0.2) is merely the union in the sense of sets.

Clearly π induces a map, written again by π :
(1.3) $\quad \pi: \boldsymbol{E}(\lambda ; k) \rightarrow C(\lambda)(k)$.

Furthermore,
(1.4) $\quad \pi$ is surjective.

In fact, take any point $Q=[x, y, z] \in C(\lambda)(k)$. If $x^{2}=z^{2}$ then $y^{2}=z^{2}$, so $Q=[\pm 1, \pm 1,1]$. Therefore there is a point $P=[1,0, \pm 1, \pm 1]$ in D such that $\pi(P)=Q$. If $x^{2} \neq z^{2}$, then there is a unique $M \in \mathcal{M}$ and an element $W \in k^{\times}$such that $x^{2}-z^{2}=w^{2} M$ and hence $y^{2}-z^{2}=w^{2} \lambda M$. In other words, we have $\pi(P)=Q$ with $P=[z$, $w, x, y] \in E(M, \lambda M)(k)$.
Q.E.D.

We can verify easily that, for $P, P^{\prime} \in \boldsymbol{E}(\lambda ; k)$, (1.5) $\quad \pi(P)=\pi\left(P^{\prime}\right) \Leftrightarrow P^{\prime}=P$ or $-P$,
where $-P=\left[x_{0},-x_{1}, x_{2}, x_{3}\right]$ is the inverse in the abelian group $E(M, \lambda M)(k)$ to which P belongs. Hence the fibre of π consists of two points P, $-P$ except for the case where $2 P=\mathscr{O}$, i.e., $P \in D$. In the latter case, π induces on D a bijection: $[1,0, \pm 1, \pm 1] \leftrightarrow[\pm 1, \pm 1,1] \in C(\lambda)(k)$.

Now consider the point $[1,1,1]$ on $C(\lambda)$ and the line L_{∞} defined dy $Z=0$. Let $[t]=[x, y, z]$ be a point on $C(\lambda)$ and $\sigma[t]$ the intersection of L_{∞} and the line joining $[1,1,1]$ and $[t]$ (stereographic projection). When $[t]=[1,1,1]$ we understand by $\sigma[t]$ the point of intersection of L_{∞} and the tangent at $[t]$ to $C(\lambda)$. The equation of the line is
(1.6) $\quad(y-z) X+(z-x) Y+(x-y) Z=0$.

Putting $Z=0$ in (1.6), we use $[X, Y]$ as the homogeneous coordinates on L_{∞} and identify [X, Y] with the non-homogeneous coordinate $u=Y / X$ on $L_{\infty}=\boldsymbol{P}^{1}$. Consequently, we have

$$
\begin{align*}
\sigma[t] & =\frac{y-z}{x-z}=\lambda \frac{x+z}{y+z} \tag{1.7}\\
{[t] } & =[x, y, z] \in C(\lambda)
\end{align*}
$$

Notice that

$$
\begin{gather*}
\sigma[1,1,-1]=1, \sigma[1,-1,1]=\infty \tag{1.8}\\
\sigma[-1,1,1]=0, \sigma[1,1,1]=\lambda
\end{gather*}
$$

On the other hand, let u be a point of L_{∞}. Then the equation of the line joining u and $[1,1,1]$ is
(1.9) $u X-Y+(1-u) Z=0$.

