Triangles and Elliptic Curves. V

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U.S.A. (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1995)

This is a continuation of my series of papers [4] each of which will be referred to as (I), (II), (III), (IV) in this paper. Let k be a field of characteristic not 2. We shall fix once for all a complete set \mathcal{M} of representatives of $k^{\times}/(k^{\times})^2$. For $M \in \mathcal{M}$ and an element $\lambda \neq 0,1$ of k, consider the set of k-rational points

(0.1)
$$E(M, \lambda M)(k) = \{ p = [x_0, x_1, x_2, x_3] ; x_0^2 + M x_1^2 = x_2^2, x_0^2 + \lambda M x_1^2 = x_3^2 \}$$

of the elliptic curve $E(M, \lambda M)$ and the bunch of (0.1) taken over \mathcal{M} :

(0.2)
$$\boldsymbol{E}(\lambda ; k) = \bigcup_{\boldsymbol{M} \in \mathcal{M}} \boldsymbol{E}(\boldsymbol{M}, \lambda \boldsymbol{M})(k).^{1}$$

Denote by D the set of four points $[1,0, \pm 1, \pm 1]$ in P^3 . For each λ , M, the set D is a subgroup of $E(M, \lambda M)(k)$ consisting of points P such that $2P = \mathcal{O} = [1,0,1,1]$; $D \approx \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. From the definition of \mathcal{M} we find that

(0.3) $E(M, \lambda M)(k) \cap E(M', \lambda M')(k) = D, \quad M \neq M'.$ In other words, the union in (0.2) is "disjoint" up to elements of D.

In this paper, we shall introduce a *surjective* map

(0.4) $c: \boldsymbol{E}(\lambda; k) \to \boldsymbol{P}^1(k)$

which is an analogue of the branched covering of Riemann surfaces. We shall also examine this map for special fields k including some local and global fields in number theory.

§1. Map c. For $P = [x_0, x_1, x_2, x_3] \in E(\lambda; k)$ in (0.2), put

(1.1) $\pi(P) = [x_2, x_3, x_0].$

Since each $M \in \mathcal{M}$ is $\neq 0, \pi(P)$ is a point in $P^2(k)$. For $\lambda \neq 0,1$ of k, let $C(\lambda)$ be the conic defined by

(1.2)
$$C(\lambda) = \{ [x, y, z] \in P^2(\bar{k}) ; y^2 - z^2 = \lambda (x^2 - z^2) \}.$$

Clearly
$$\pi$$
 induces a map, written again by π :
(1.3) $\pi: \mathbf{E}(\lambda; k) \to C(\lambda)(k).$

Furthermore,

(1.4) π is surjective.

In fact, take any point $Q = [x, y, z] \in C(\lambda)(k)$. If $x^2 = z^2$ then $y^2 = z^2$, so $Q = [\pm 1, \pm 1, 1]$. Therefore there is a point $P = [1, 0, \pm 1, \pm 1]$ in D such that $\pi(P) = Q$. If $x^2 \neq z^2$, then there is a unique $M \in \mathcal{M}$ and an element $W \in k^{\times}$ such that $x^2 - z^2 = w^2 M$ and hence $y^2 - z^2 = w^2 \lambda M$. In other words, we have $\pi(P) = Q$ with $P = [z, w, x, y] \in E(M, \lambda M)(k)$. Q.E.D.

We can verify easily that, for $P, P' \in E(\lambda; k)$, (1.5) $\pi(P) = \pi(P') \Leftrightarrow P' = P \text{ or } -P$,

where $-P = [x_0, -x_1, x_2, x_3]$ is the inverse in the abelian group $E(M, \lambda M)(k)$ to which P belongs. Hence the fibre of π consists of two points P, -P except for the case where $2P = \mathcal{O}$, i.e., $P \in D$. In the latter case, π induces on D a bijection: $[1,0, \pm 1, \pm 1] \leftrightarrow [\pm 1, \pm 1, 1] \in C(\lambda)(k)$.

Now consider the point [1,1,1] on $C(\lambda)$ and the line L_{∞} defined dy Z = 0. Let [t] = [x, y, z]be a point on $C(\lambda)$ and $\sigma[t]$ the intersection of L_{∞} and the line joining [1,1,1] and [t] (stereographic projection). When [t] = [1,1,1] we understand by $\sigma[t]$ the point of intersection of L_{∞} and the tangent at [t] to $C(\lambda)$. The equation of the line is

(1.6) (y-z)X + (z-x)Y + (x-y)Z = 0. Putting Z = 0 in (1.6), we use [X, Y] as the homogeneous coordinates on L_{∞} and identify [X, Y] with the non-homogeneous coordinate u = Y/X on $L_{\infty} = \mathbf{P}^{1}$. Consequently, we have

(1.7)
$$\sigma[t] = \frac{y-z}{x-z} = \lambda \frac{x+z}{y+z},$$
$$[t] = [x, y, z] \in C(\lambda).$$

Notice that

(1.8) $\sigma[1,1,-1] = 1, \sigma[1,-1,1] = \infty, \\ \sigma[-1,1,1] = 0, \sigma[1,1,1] = \lambda.$

On the other hand, let u be a point of L_{∞} . Then the equation of the line joining u and [1,1,1] is (1.9) uX - Y + (1 - u)Z = 0.

¹⁾ As usual, we write X(k) or X_k for the *k*-rational subset of a set *X* of geometric objects. We also use *X* for $X(\bar{k})$ occasionally where \bar{k} denotes the algebraic closure of *k*. E.g., $X = E(M, \lambda M)$ is an elliptic curve in $P^3 = P^3(\bar{k})$ and (0.1) is the subset of *k*-rational points of *X*. On the other hand, since the set \mathcal{M} is not necessarily finite, the set $E(\lambda; k)$ in (0.2) is merely the union in the sense of sets.