A Construction of Exceptional Simple Graded Lie Algebras of the Second Kind

By Satoshi GOMYO

Department of Mathematics, Yokohama City University (Communicated by Kiyosi ITÔ, M. J. A., Jan. 12, 1995)

- **§0.** Introduction. Let $g = \sum_{k=-2}^{2} g_k$ be a graded Lie algebra of the second kind (shortly 2-GLA). In [5], Kaneyuki gave the classification of exceptional real simple 2-GLA's and listed up the subalgebras g_0 and the dimension of $g_k(k=1,2)$. Since the subspaces $g_k(k\neq0)$ were not explicitly determined in [5], we will give an explicit representation of g_k in this paper. Up to the present, several constructions of 2-GLA have been thought out. Allison ([1]) gave a construction of 2-GLA starting from structurable algebra. His construction is useful but some exceptional real simple 2-GLA's can not be obtained by his construction. Details and proofs will be found in [3].
- **§1. Methods of construction.** In this section, we give two methods of construction of 2-GLA.
- 1.1 Let g_0 be a real Lie algebra and $V_k(k=1,2)$ a real vector space with a nondegenerate symmetric bilinear form (,). For each element \boldsymbol{u} of V_k , the element \boldsymbol{u}^* of the dual space V_k^* is defined by $\boldsymbol{u}^*(\boldsymbol{v}) = (\boldsymbol{u},\boldsymbol{v}) \ (\boldsymbol{v} \in V_k)$. Let ρ_k be a representation of g_0 on $V_k(k=1,2)$. By ρ_k^* , we denote the dual representation of ρ_k , that is

$$(\rho_k^*(X)\mathbf{u}^*)(\mathbf{v}) + \mathbf{u}^*(\rho_k(X)\mathbf{v}) = 0$$

$$(\mathbf{u}, \mathbf{v} \in V_k, X \in g_0).$$

Now, we assume that the following bilinear maps are given.

$$\Delta: V_2 \times V_1^* \to V_1$$
, $\circ: V_1 \times V_1 \to V_2$ (antisymmetric)

$$\times: V_1 \times V_1^* \to g_0, \ *: V_2 \times V_2^* \to g_0.$$

Let us consider the real vector space

$$g = g_0 \oplus V_1 \oplus V_1^* \oplus V_2 \oplus V_2^*.$$

We define a bilinear bracket operation in ${\mathfrak g}$ as follows:

$$(X, \boldsymbol{u}, \boldsymbol{v}^*, \boldsymbol{x}, \boldsymbol{y}^*)$$

= $[(X_1, \boldsymbol{u}_1, \boldsymbol{v}_1^*, \boldsymbol{x}_1, \boldsymbol{y}_1^*), (X_2, \boldsymbol{u}_2, \boldsymbol{v}_2^*, \boldsymbol{x}_2, \boldsymbol{y}_2^*)],$
where

$$\begin{cases} X = [X_1, X_2] + \boldsymbol{u}_1 \times \boldsymbol{v}_2^* - \boldsymbol{u}_2 \times \boldsymbol{v}_1^* \\ + \boldsymbol{x}_1 * \boldsymbol{y}_2^* - \boldsymbol{x}_2 * \boldsymbol{y}_1^*, \\ \boldsymbol{u} = \rho_1(X_1)\boldsymbol{u}_2 - \rho_1(X_2)\boldsymbol{u}_1 + \boldsymbol{x}_1 \Delta \boldsymbol{v}_2^* - \boldsymbol{x}_2 \Delta \boldsymbol{v}_1^*, \\ \boldsymbol{v}^* = \rho_1^*(X_1)\boldsymbol{v}_2^* - \rho_1^*(X_2)\boldsymbol{v}_1^* \\ - (\boldsymbol{y}_1 \Delta \boldsymbol{u}_2^*)^* + (\boldsymbol{y}_2 \Delta \boldsymbol{u}_1^*)^*, \\ \boldsymbol{x} = \rho_2(X_1)\boldsymbol{x}_2 - \rho_2(X_2)\boldsymbol{x}_1 + \boldsymbol{u}_1 \circ \boldsymbol{u}_2, \\ \boldsymbol{y}^* = \rho_2^*(X_1)\boldsymbol{y}_2^* - \rho_2^*(X_2)\boldsymbol{y}_1^* - (\boldsymbol{v}_1 \circ \boldsymbol{v}_2)^*. \end{cases}$$

In [3], we give a necessary and sufficient condition for $\mathfrak g$ to be a Lie algebra. When $\mathfrak g$ is a Lie algebra, obviously $\mathfrak g = \sum_{k=-2}^2 g_k (g_k = V_k, g_{-k} = V_k^*)$ becomes a 2-GLA.

1.2. Let $g = \sum_{k=-2}^{2} g_k$ be a 2-GLA and γ a grade-preserving involution (= involutive automorphism) of g. Put

$$g_{\gamma} = \{ X \in \mathfrak{g} \mid \gamma(X) = X \}, (g_k)_{\gamma} = \{ X \in g_k \mid \gamma(X) = X \}.$$

If $(g_{\pm 2})_{\tau} \neq (0)$, then the subalgebra $g_{\tau} = \sum_{k=-2}^{2} (g_{k})_{\tau}$ also becomes a 2-GLA.

§2. The main theorem. Using g_0 and dim g_k listed up in [5], we construct the corresponding 2-GLA's by the methods described in §1. Then we have the following theorem.

Theorem 1. The exceptional real simple graded Lie algebras of the second kind are realized as listed in Table I.

In Table I, we use the following notations.

 $m{C}$ (resp. $m{C}'$): the algebra of complex (resp. split complex) numbers

 $m{H}$ (resp. $m{H}'$): the algebra of quaternion (resp. split quaternion) numbers

 \mathfrak{C} (resp. \mathfrak{C}'): the division Cayley (resp. split Cayley) algebra

For a real vector space V, its complexification $\{u + iv \mid u, v \in V\}$ is denoted by V^c . We do not identify R^c with C, but denote R^c by C.

From now on, we explain the contents of Table I.

(1) In case of (e1) \sim (e9) and (e24) \sim (e27):