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1. Introduction. In the present paper, we
discuss the integrability of infinitesimal auto-
morphisms of linear Poisson manifolds. An in-
finitesimal automorphism X is said to be integr-
able, if it is a Hamiltonian vector field.

Let G be a connected Lie group with Lie
algebra 9, and let g-* be the dual of g. The linear
Poisson structure on g is defined as a Lie algeb-
ra structure on C(g*) satisfying Leibniz identi-
ty. This is equal to giving an antisymmetric con-
travariant 2-tensor P on which satisfies Jaco-
bi identity. More precisely, for all f, g
C (g*) and 12 g the Poisson bracket is given
by

{f, g} (12) (12, [duf,
where [, is the Lie algebra operation in

fl, (,) is the pairing of fl* with fl, and duf is the
differential of f considered as an element of fl in-

**stead of fl In the case of general Poisson man-
ifolds, the Poisson bracket is given by {f, g}
(P dfA dg).

We denote by G’12 the G-orbit passing,
through 12 with respect to the coadjoint rep-,
resentation of G on 6. By the theorem of
Kirillov-Kostant-Souriau, each G-12 is a symplec-,
tic leaf in (Hence it is even dimensional.) Let
Gu be the isotropy group at /2. Then G’12 is dif-
feomorphic to G/Gu. For more informations ab-
out linear Poisson manifolds, see [7].

Now we shall define three (infinite dimen-

sional) Lie algebras of vector fields on 9 By an,
infinitesimal automorphism of we mean a

smooth vector field X on such that L(X)P--
0, where L(X)denotes the Lie derivative along
X. We denote by the Lie algebra consisting of
such vector fields X. Let be a Lie subalgebra
of consisting of vector fields X such that each
X is tangent to symplectic leaves G’12. Given f
C (9 {f "} defines a derivation of Coo(9").
Hence there corresponds a vector field , which
we call the Hamiltonian vector field. And we de-
note by : the Lie algebra of Hamiltonian vector

fields. Then there are canonical inclusions:
P J 2)W. Direct calculation shows that both
Lie subalgebras J and J{ are ideals of

A vector field X of P is called "integrable"
if it belongs to J{. If all vector fields of are in-
tegrable (i.e. P Jg), then P is called integrable.

In the case of 9 0(3, R), we proved that is

integrable ([3] and [4]). In this paper, we treat the
case of t 1(2, R).

Recall that the quotient space /W is no-
thing but the first Poisson cohomology ([1] and
[5]). There are many papers about Poisson coho-
mology of "regular" Poisson manifolds ([1], [5], [6]
and [8]). Note that linear Poisson manifolds give

typical examples of "nonregular" Poisson man-
ifolds. Therefore our study can be regarded as

the first approach to the study of Poisson coho-
mology of "nonregular" Poisson manifolds.

2. Chevalley-Eilenberg complex. In this
section, we shall express the integrability of vec-

tor fields in terms of Lie algebra cohomology (see
for example [4]). Let (V, p)be any representa-
tion of the Lie algebra 9 on a vector space.
Associated to this representation, there is the
Chevalley-Eilenberg complex:

0 AI* ’ A"t*v v(R) v(R)
where coboundary operators are defined by set-
ting

((0a) (1) i0(:1)
(a) (/) p(x) (())

0(5)(5()) 5([, ,]),
for all c E V and /9 e V( A1CI* and 1,
It holds that oq" 3o 0. The quotient Ht(9;
(V, p))= kernel ((3)/image (3o) is called the
first cohomology group of with coefficients in

the module (V, p). Recall that when 9 is semi-

simple and V is finite dimensional, the space
H(g; (V, p)) vanishes. Let x, x, x, be the
basis of . Then xl, xz,..., xn are considered as
coordinate functions on We denote by F{}
the space of all formal functions with variables

x, xz,..., Xn. F{} can be identified with the set


