The Diophantine Equation $a^x + b^y = c^z$. II

By Nobuhiro TERAI

Division of General Education, Ashikaga Institute of Technology (Communicated by Shokichi IYANAGA, M. J. A., June 13, 1995)

§1. Introduction. In the previous paper [8], we proposed the following:

Conjecture. If a, b, c, p, q, r are fixed positive integers satisfying $a^p + b^q = c^r$ with p, q, r ≥ 2 and (a, b) = 1, then the Diophantine equation $a^x + b^y = c^z$ has the only positive integral solution (x, y, z) =(p, q, r).

When (p, q, r) = (2,2,2), the above Conjecture is called Jeśmanowicz's conjecture. It has been verified that this conjecture holds for many Pythagorean numbers (cf. Jeśmanowicz [3], Takakuwa and Asaeda [5], [6], Takakuwa [7], Adachi [1]).

In [8], we considered the above Conjecture when (p, q, r) = (2,2,3) and showed that it holds for certain a, b, c satisfying $a^2 + b^2 = c^3$.

In this paper, we consider the case (p, q, r)= (2,2,5). Using an argument similar to the one used in [8], we shall prove that the above Conjecture also holds for certain a, b, c satisfying $a^2 + b^2 = c^5$ as specified in Theorem in §2. We shall also give some examples of a, b, c satisfying the conditions of Theorem.

§2. Theorem. We first prepare some lemmas.

In the same way as in the proof of Lemma 1 in [8], we obtain the following:

Lemma 1. The integral solutions of the equation $a^2 + b^2 = c^5$ with (a, b) = 1 are given by $a = \pm u(u^4 - 10u^2v^2 + 5v^4),$

 $b = \pm v(5u^4 - 10u^2v^2 + v^4), c = u^2 + v^2,$

where u, v are integers such that (u, v) = 1 and u $\not\equiv v \pmod{2}$.

In the following, we consider the case u =m, v = 1; i.e.

(2)
$$a = m(m^4 - 10m^2 + 5),$$

 $b = 5m^4 - 10m^2 + 1, c = m^2 + 1$

and

m is even.

Lemma 2. Let a, b, c be positive integers satisfying (2). If the Diophantine equation (1) has positive integral solutions (x, y, z), then x and y

Proof. It suffices to show that

$$\left(rac{a}{b}
ight)=-$$
 1, $\left(rac{c}{b}
ight)=$ 1, $\left(rac{b}{a'}
ight)=-$ 1 and $\left(rac{c}{a'}
ight)=$ 1

with a = ma', where $\left(\frac{*}{*}\right)$ denotes the Jacobi symbol. These imply that x and y are even.

Since $b \equiv 1 \pmod{8}$, we have $\left(\frac{m}{b}\right) = 1$. In

fact, putting $m = 2^s t (s \ge 1 \text{ and } t \text{ is odd}), \left(\frac{m}{h}\right) =$

$$\left(\frac{2^s}{b}\right)\left(\frac{t}{b}\right) = \left(\frac{t}{b}\right) = \left(\frac{b}{t}\right) = \left(\frac{1}{t}\right) = 1.$$

Hence we have $\left(\frac{a}{b}\right) = \left(\frac{m}{b}\right) \left(\frac{a'}{b}\right) = \left(\frac{a'}{b}\right) =$

$$\left(\frac{b}{a'}\right) = \left(\frac{5m^4 - 10m^2 + 1}{m^4 - 10m^2 + 5}\right) = \left(\frac{2}{m^4 - 10m^2 + 5}\right)$$

$$\left(\frac{5m^2 - 3}{m^4 - 10m^2 + 5}\right) = (-1) \cdot \left(\frac{m^4 - 10m^2 + 5}{5m^2 - 3}\right)$$

$$= (-1) \cdot 1 = -1. \text{ Thus we obtain } \left(\frac{a}{b}\right) = \left(\frac{b}{a'}\right) = -1.$$

We also have
$$\left(\frac{c}{b}\right) = \left(\frac{b}{c}\right) = \left(\frac{16}{m^2 + 1}\right) = 1$$
,

and
$$\left(\frac{c}{a'}\right) = \left(\frac{a'}{c}\right) = \left(\frac{16}{m^2 + 1}\right) = 1.$$
 Q.E.D.

Lemma 3. Let a, b, c be positive integers satisfying $a^2 + b^2 = c^5$ and (a, b) = 1. Suppose that there is an odd prime l such that $ab \equiv 0 \pmod{l}$ and $e \equiv 0 \pmod{5}$, where e is the order of c modulo l. If the Diophantine equation (1) has positive integral solutions (x, y, z), then $z \equiv 0 \pmod{5}$.

Proof. We may suppose that $b \equiv 0 \pmod{l}$ without loss of generality.

It follows from $a^2 + b^2 = c^5$ that $a^2 \equiv c^5$ (mod l). By (1), we see that $a^x \equiv c^z \pmod{l}$, so $c^{2z} \equiv a^{2x} \equiv c^{5x} \pmod{l}$. Hence we have $c^{5x-2z} \equiv$ 1 (mod l), which implies $5x - 2z \equiv 0 \pmod{e}$. Therefore we have $z \equiv 0 \pmod{5}$.

Lemma 4. (a) (Lebesgue [4]). The Diophan-