The Diophantine Equation $a^{x}+b^{y}=c^{z}$. II

By Nobuhiro TERAI
Division of General Education, Ashikaga Institute of Technology
(Communicated by Shokichi Iyanaga, M. J. A., June 13, 1995)

§1. Introduction. In the previous paper [8], we proposed the following:

Conjecture. If a, b, c, p, q, r are fixed positive integers satisfying $a^{p}+b^{q}=c^{r}$ with p, q, r ≥ 2 and $(a, b)=1$, then the Diophantine equation

$$
\begin{equation*}
a^{x}+b^{y}=c^{z} \tag{1}
\end{equation*}
$$

has the only positive integral solution $(x, y, z)=$ (p, q, r).

When $(p, q, r)=(2,2,2)$, the above Conjecture is called Jesmanowicz's conjecture. It has been verified that this conjecture holds for many Pythagorean numbers (cf. Jeśmanowicz [3], Takakuwa and Asaeda [5], [6], Takakuwa [7], Adachi [1]).

In [8], we considered the above Conjecture when $(p, q, r)=(2,2,3)$ and showed that it holds for certain a, b, c satisfying $a^{2}+b^{2}=c^{3}$.

In this paper, we consider the case (p, q, r) $=(2,2,5)$. Using an argument similar to the one used in [8], we shall prove that the above Conjecture also holds for certain a, b, c satisfying $a^{2}+b^{2}=c^{5}$ as specified in Theorem in §2. We shall also give some examples of a, b, c satisfying the conditions of Theorem.
§2. Theorem. We first prepare some lemmas.

In the same way as in the proof of Lemma 1 in [8], we obtain the following:

Lemma 1. The integral solutions of the equation $a^{2}+b^{2}=c^{5}$ with $(a, b)=1$ are given by

$$
a= \pm u\left(u^{4}-10 u^{2} v^{2}+5 v^{4}\right)
$$

$$
b= \pm v\left(5 u^{4}-10 u^{2} v^{2}+v^{4}\right), c=u^{2}+v^{2}
$$

where u, v are integers such that $(u, v)=1$ and u $\not \equiv v(\bmod 2)$.

In the following, we consider the case $u=$ $m, v=1$; i.e.
(2) $\quad a=m\left(m^{4}-10 m^{2}+5\right)$,

$$
b=5 m^{4}-10 m^{2}+1, c=m^{2}+1
$$

and
m is even.
Lemma 2. Let a, b, c be positive integers satisfying (2). If the Diophantine equation (1) has
positive integral solutions (x, y, z), then x and y are even.

Proof. It suffices to show that
$\left(\frac{a}{b}\right)=-1,\left(\frac{c}{b}\right)=1,\left(\frac{b}{a^{\prime}}\right)=-1$ and $\left(\frac{c}{a^{\prime}}\right)=1$ with $a=m a^{\prime}$, where $\left(\frac{*}{*}\right)$ denotes the Jacobi symbol. These imply that x and y are even.

Since $b \equiv 1(\bmod 8)$, we have $\left(\frac{m}{b}\right)=1$. In fact, putting $m=2^{s} t\left(s \geq 1\right.$ and t is odd), $\left(\frac{m}{b}\right)=$ $\left(\frac{2^{s}}{b}\right)\left(\frac{t}{b}\right)=\left(\frac{t}{b}\right)=\left(\frac{b}{t}\right)=\left(\frac{1}{t}\right)=1$.

Hence we have $\left(\frac{a}{b}\right)=\left(\frac{m}{b}\right)\left(\frac{a^{\prime}}{b}\right)=\left(\frac{a^{\prime}}{b}\right)=$ $\left(\frac{b}{a^{\prime}}\right)=\left(\frac{5 m^{4}-10 m^{2}+1}{m^{4}-10 m^{2}+5}\right)=\left(\frac{2}{m^{4}-10 m^{2}+5}\right)$ $\left(\frac{5 m^{2}-3}{m^{4}-10 m^{2}+5}\right)=(-1) \cdot\left(\frac{m^{4}-10 m^{2}+5}{5 m^{2}-3}\right)$ $=(-1) \cdot 1=-1$. Thus we obtain $\left(\frac{a}{b}\right)=$ $\left(\frac{b}{a^{\prime}}\right)=-1$.

We also have $\left(\frac{c}{b}\right)=\left(\frac{b}{c}\right)=\left(\frac{16}{m^{2}+1}\right)=1$, and $\left(\frac{c}{a^{\prime}}\right)=\left(\frac{a^{\prime}}{c}\right)=\left(\frac{16}{m^{2}+1}\right)=1$. Q.E.D.

Lemma 3. Let a, b, c be positive integers satisfying $a^{2}+b^{2}=c^{5}$ and $(a, b)=1$. Suppose that there is an odd prime l such that $a b \equiv 0(\bmod l)$ and $e \equiv 0(\bmod 5)$, where e is the order of $c \bmod$ ulo l. If the Diophantine equation (1) has positive integral solutions (x, y, z), then $z \equiv 0(\bmod 5)$.

Proof. We may suppose that $b \equiv 0(\bmod l)$ without loss of generality.

It follows from $a^{2}+b^{2}=c^{5}$ that $a^{2} \equiv c^{5}$ $(\bmod l)$. By (1), we see that $a^{x} \equiv c^{z}(\bmod l)$, so $c^{2 z} \equiv a^{2 x} \equiv c^{5 x}(\bmod l)$. Hence we have $c^{5 x-2 z} \equiv$ $1(\bmod l)$, which implies $5 x-2 z \equiv 0(\bmod e)$. Therefore we have $z \equiv 0(\bmod 5)$.
Q.E.D.

Lemma 4. (a) (Lebesgue [4]). The Diophan-

