Triangles and Elliptic Curves. IV

By Takashi ONO
Department of Mathematics, The Johns Hopkins University, U.S.A. (Communicated by shokichi IyANAGA, M. J. A., May 12, 1995)

This is a continuation of my preceding papers [1], [2], [3], which will be referred to as (I), (II), (III) in this paper. As in (II), (III), to each triple (l, m, n) of independent linear forms on \bar{k}^{3}, k being a field of characteristic not 2 and \bar{k} its algebraic closure, we associate a space
(0.1) $T=\left\{t \in \bar{k}^{3}\right.$;

$$
\left.\left(l^{2}-m^{2}\right)\left(m^{2}-n^{2}\right)\left(n^{2}-l^{2}\right) \neq 0\right\}
$$

Since the condition for $t \in T$ in (0.1) is given by a homogeneous polynomial, we can speak of the subset $P(T)$ of the projective plane
(0.2) $\quad P(T)=\left\{[t] \in P^{2}(\bar{k}) ;\right.$

$$
\left.\left(l^{2}-m^{2}\right)\left(m^{2}-n^{2}\right)\left(n^{2}-l^{2}\right) \neq 0\right\}
$$

which is the complement of the complete quadrangle given by six lines $\left(l^{2}-m^{2}\right)\left(m^{2}-n^{2}\right)$ $\left(n^{2}-l^{2}\right)=0$. Since T is the total space of a bundle whose fibres are (affine parts of) elliptic curves in $P^{3}(\bar{k})$, it is natural to think of their images under the canonical map $T \rightarrow P(T)$ given by $t \mapsto[t]$, the homogeneous coordinates for t. In this paper, we shall study this aspect of the space T and show that there is a close relation between certain family of elliptic curves and a single plane conic, over a given field k of rationality. If X denotes a set of geometric objects, we shall denote by $X(K)$ (or by X_{K} occasionally) the subset of X which is rational over K.
§1. Basic diagram. Along with the canonical map $P: T \rightarrow P(T)^{\prime}((0,1),(0,2))$, we consider the diagram:

where

$$
\begin{gather*}
\Omega=\{\omega=(M, N) \in \bar{k} \times \bar{k} \tag{1.2}\\
M=\{\lambda \in \bar{k} ; \lambda \neq 0,1\} \\
p(t)=\left(l^{2}-n^{2}, m^{2}-n^{2}\right), r(\omega)=\frac{N}{M} \tag{1.3}\\
p[t]=r(p(t))=\frac{m^{2}-n^{2}}{l^{2}-n^{2}} \tag{1.4}
\end{gather*}
$$

Since \bar{k} is algebraically closed, p is surjective and hence so is \bar{p}. For an $\omega=(M, N) \in$ Ω, P induces naturally a map

$$
\text { (1.6) } \quad P_{\omega}: p^{-1}(\omega) \rightarrow p^{-1}(r(\omega))
$$

Again since \bar{k} is algebraically closed, we see that P_{ω} is surjective and each fibre is of the form $\{ \pm t\}, t \in T$; in other words, P_{ω} is a covering of degree 2. The fibres of p, p are described as follows. For an $\omega=(M, N)$, let
(1.7) $E(\omega)=\left\{[x] \in P^{3}(\bar{k})\right.$;

$$
\left.x_{0}^{2}+M x_{1}^{2}=x_{2}^{2}, x_{0}^{2}+N x_{1}^{2}=x_{3}^{2}\right\}
$$

this being an elliptic curve in $P^{3}(\bar{k})$ (see e.g., [4] Chap. 4). Deleting four 2 -torsion points out of (1.7), we obtain the affine part of (1.7):
(1.8) $\quad E_{0}(\omega)=\left\{(x, y, z) \in \bar{k}^{3} ; z^{2}+M=x^{2}\right.$,

$$
\left.z^{2}+N=y^{2}\right\}
$$

From (1.4), (1.8), we have a bijection
(1.9) $\quad p^{-1}(\omega) \xrightarrow{\sim} E_{0}(\omega), \omega \in \Omega$, given by $t \mapsto(l(t), m(t), n(t)), t \in p^{-1}(\omega)$.

On the other hand, for a $\lambda \in \Lambda$, let
(1.10) $c(\lambda)=\left\{[x, y, z] \in p^{2}(\bar{k})\right.$;

$$
\left.y^{2}-z^{2}=\lambda\left(x^{2}-z^{2}\right)\right\}
$$ this being a nonsingular conic in $p^{2}(\bar{k})$. Denoting by H the complete quadrangle given by

(1.11) $H=\left\{[x, y, z] \in p^{2}(\bar{k})\right.$;

$$
\left.\left(x^{2}-y^{2}\right)\left(y^{2}-z^{2}\right)\left(z^{2}-x^{2}\right)=0\right\}
$$

we have
(1.12) $C(\lambda) \cap H=\{[1,1,1],[-1,1,1]$,

$$
[1,-1,1],[1,1,-1]\}
$$

which is independent of $\lambda \in \Lambda$.
Deleting these four points from $C(\lambda)$, write
(1.13) $\quad C_{0}(\lambda)=C(\lambda)-H$.

From (1.5), (1.11), (1.12), (1.13), we have a bijection
(1.14) $\quad p^{-1}(\lambda) \xrightarrow{\sim} C_{0}(\lambda)$
given by $[t] \mapsto[l(t), m(t), n(t)]$.
In view of (1.6), (1.9), (1.14), we obtain a covering of degree 2 :
$\pi_{\omega}: E_{0}(\omega) \rightarrow C_{0}\left(\frac{N}{M}\right), \omega=(M, N) \in \Omega$,
given by $(x, y, z) \mapsto[x, y, z]$.

