23. Algebraic Geometry of Center Curves in the Moduli Space of the Cubic Maps

By Kiyoko Nishizawa*) and Asako NoJiri**)
(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1994)

0. Introduction. In our previous paper [6], we have defined the so-called center curves BC_{p} and CD_{p}, which are algebraic curves, for the real cubic maps. The attached figure 1 gives the graphs of these curves for p $=1,2,3,4$. Note that these graphs exist only in the first and third quadrants. The same holds also for other values $p=5,6, \cdots$.

In the present paper we consider the complex maps. For such a cubic map g, we have two normal forms ; $x^{3}-3 A x \pm \sqrt{B}, A, B \in \mathbf{C}$. Therefore, the complex affine conjugacy class of g can be represented by (A, B). The moduli space, consisting of all affine conjugacy classes of cubic maps, can be identified with the coordinate space $\mathbf{C}^{2}=\{(A, B)\}$. For the post-critically finite complex cubic maps, the center curves $\mathrm{CD}_{p}, \mathrm{BC}_{p}$ can be defined in the same way as in [6]. In section 1 , we show how the equations of these curves are obtained by induction on p.

We can embed \mathbf{C}^{2} canonically in $\mathbf{P}^{2}(\mathbf{C}):(A, B) \rightarrow(1: A: B)$. Then an affine algebraic curve $V_{0}=\left\{(A, B) \in \mathbf{C}^{2}: h(A, B)=0\right\}$ uniquely determines a projective algebraic curve $V=\left\{(C: A: B) \in \mathbf{P}^{2}(\mathbf{C}): H(C: A: B)\right.$ $=0\}$ in $\mathbf{P}^{2}(\mathbf{C})$ such that $h(A, B)=H(1: A: B)$ and $V \cap \mathbf{C}^{2}=V_{0}$.

Definition. For a center curve V_{0}, the corresponding projective algebraic curve V is called the projective center curve. We denote by PBC_{p} and PCD_{p}, these curves corresponding to BC_{p} and CD_{p} respectively.

In sections 2 and 3 , we give some properties of these curves from the viewpoint of algebraic geometry ([1]).

1. The equations of center curves. Let $f(x)=x^{3}-3 A x+\sqrt{B}$, with critical points $\pm \sqrt{A}$.

The equation of curve BC 1 is obtained as follows:

$$
\begin{aligned}
f(\sqrt{A})-(-\sqrt{A}) & =(-2 A+1) \sqrt{A}+\sqrt{B}=0 \\
f(-\sqrt{A})-\sqrt{A} & =(2 A-1) \sqrt{A}+\sqrt{B}=0 .
\end{aligned}
$$

Therefore,

$$
\mathrm{BC} 1: B=A(2 A-1)^{2} .
$$

The equation of curve CD1 is obtained as follows:

$$
\begin{aligned}
f(\sqrt{A})-\sqrt{A} & =(-2 A-1) \sqrt{A}+\sqrt{B}=0, \\
f(-\sqrt{A})-(-\sqrt{A}) & =(2 A+1) \sqrt{A}+\sqrt{B}=0 .
\end{aligned}
$$

[^0]
[^0]: *) Department of Mathematics, Faculty of Science, Josai University.
 **) Department of Mathematics, Shirayuri Gakuen.

