21. A Skorokhod Problem with Singular Drift and its Application to the Origin of Universes

By Thomas Domenig and Masao Nagasawa
Institut für Angewandte Mathematik der Universität Zürich Irchel, Switzerland (Communicated by Kiyosi ITÔ, M. J. A., April 12, 1994)

1. Introduction. Let $R(t)$ be strictly increasing and continuous in $t \geq 0$ with $R(0)=0$. In a space-time domain

$$
\begin{equation*}
D=\{(t, x) ; t>0, x \in[-R(t), R(t)]\} \tag{1.1}
\end{equation*}
$$

we consider a singular diffusion equation and its formal adjoint

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{1}{2} \sigma^{2} \frac{\partial^{2} u}{\partial x^{2}}+\frac{x}{t} \frac{\partial u}{\partial x}=0, \quad-\frac{\partial \mu}{\partial t}+\frac{1}{2} \sigma^{2} \frac{\partial^{2} \mu}{\partial x^{2}}-\frac{\partial}{\partial x}\left(\frac{x}{t} \mu\right)=0, \tag{1.2}
\end{equation*}
$$

with the reflecting boundary condition. (1.2) determines a transition probability $Q(s, x ; t, d y), s, t \in[a, b], 0<a<b<\infty$. Since $\{Q(s, x ; t$, $d y) ; s \in(0, \varepsilon]\}$ is tight because of (1.1), we can chose $\xi(s) \downarrow 0$ so that

$$
\begin{equation*}
Q^{\xi}(0,0 ; t, d y)=\lim _{s \downarrow 0} Q(s, \xi(s) ; t, d y) \tag{1.3}
\end{equation*}
$$

exists, but the limit $Q^{\xi}(0,0 ; t, d y)$ depends on ξ and is not uniquely determined in general. We will discuss this problem and its implication to the origin of universes in terms of a Skorokhod problem with singular drift x / t.
2. A Skorokhod problem. Instead of (1.2) with the moving reflecting boundary we consider a two-sided Skorokhod problem with singular drift

$$
\begin{equation*}
X_{t}=\sigma \beta_{t}+\int_{0}^{t} \frac{X_{s}}{s} d s+\Phi_{t}, \quad\left|X_{t}\right| \leq R(t) \tag{2.1}
\end{equation*}
$$

where β_{t} denotes a one-dimensional Brownian motion, and
Φ_{t} is continuous in $t \geq 0, \Phi_{0}=0$,
$\Phi_{t}=\Phi_{t}^{(-)}-\Phi_{t}^{(+)}$, for $t>0$,

$$
\Phi_{t}^{(-)} \text {increases only on }\{s: X(s)=-R(s)\},
$$

$$
\Phi_{t}^{(+)} \text {increases only on }\{s: X(s)=R(s)\}
$$

We will construct solutions of the problem (2.1), and show that the shape of the boundary of the domain D influences the uniqueness and non-uniqueness of solutions of (2.1). Assuming

$$
\begin{equation*}
R(t)=(\alpha t)^{\gamma}, 0<\gamma<1 \text {, for small } t, \tag{2.3}
\end{equation*}
$$

where $\alpha>0$, we shall analyze the behaviour of solutions near the origin.
3. The case without boundary. Equation (1.2) but $[a, b] \times \mathbf{R}$ without boundary determines another transition probability $\mathrm{P}(s, x ; t, d y)$. Contrary to the case with reflecting boundary, $\mathrm{P}(0,0 ; t, d y)$ cannot be well-defined, since $\{\mathrm{P}(s, x ; t, d y): s \in(0, \varepsilon]\}$ is not tight. Hence, a stochastic differential equation

$$
\begin{equation*}
X_{t}=\sigma \beta_{t}+\int_{0}^{t} \frac{X_{s}}{s} d s \tag{3.1}
\end{equation*}
$$

has no adapted solution, where β_{t} denotes a one-dimensional Brownian motion. Nevertheless, a theorem of Jeulin-Yor [5] (cf. [6]) claims that X_{t} satisfies

