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1. Introduction. Let R(t)be strictly increasing and continuous in
t --> 0 with R(0) 0. In a space-time domain
(1.1) D ((t, x) ;t > O, x [- R(t), R(t)]},
we consider a singular diffusion equation and its formal adjoint
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with the reflecting boundary condition. (1.2) determines a transition prob-
ability Q(s, x t, dy), s, t [a, b], 0 < a 4 b < Since (Q(s, x t,
dy) ;s (0, el} is tight because of (1.1), we can chose (s) 0 so that
(1.3) Q(0, 0; t, dy) lim0 Q(s, (s) t, dy)
exists, but the limit Q(0, 0; t, dy) depends on and is not uniquely deter-
mined in general. We will discuss this problem and its implication to the ori-
gin of universes in terms of a Skorokhod problem with singular drift x/t.

2. A Skorokhod problem. Instead of (1.2) with the moving reflecting
boundary we consider a two-sided Skorokhod problem with singular drift

(2.) x a + <

where fl denotes a one-dimensional Brownian motion, and
(2.2) is continuous in t 2 0, 0 0,

(-) (+)= for t> 0,
-) increases only on (s X(s) R(s)},

(+)t increases only on (s" X(s) R(s)}.
We will construct solutions of the problem (2.1), and show that the

shape of the boundary of the domain D influences the uniqueness and
non-uniqueness of solutions of (2.1). Assuming
(2.3) R(t) (t) r, 0 < y < 1, for small t,
where 0, we shall analyze the behaviour of solutions near the origin.

3. The case without boundary. Equation (1.2) but [a, b] R without
boundary determines another transition probability P(s, x t, dy). Contrary
to the case with reflecting boundary, P(0, 0;t, dy) cannot be well-defined,
since (P(s, x t, dy) :s (0, s]} is not tight. Hence, a stochastic differen-
tial equation

’Xs ds

has no adapted solution, where fit denotes a one-dimensional Brownian mo-
tion. Nevertheless, a theorem of Jeulin-Yor [5] (cf. [6]) claims that Xt satisfies


