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1. Introduction. In this paper we give estimates for large eigenvalues
of Schrédinger operators — 4 + V with increasing potential V. Let N(1) be
the number of eigenvalues of the Schrodinger operator less than A. Under
some conditions on V we can prove the asymptotic formula
(1) NQO ~ o™ |[{¢,2) €eR* xR : | &P+ V(x) < 2} | A — ),
which means that there is a correspondence between each eigenvalue less
than A and each set with volume (27)° in {(§, z) € R’ x R*: & +
V(x) < A}. This correspondence is known as the Bohr-Sommerfeld quantiza-
tion rule. A lot of people study the conditions on potentials for the formula
(1), for instance, Feigin [3], Fleckinger [4], Rozenbljum [5], Simon [6], Tachi-
zawa [7], Titchmarsh [8] and so on.

In this paper we give another formulation of this problem. Let A = (N
X Z) U A{0,20) :w €Z and B={(m, n) :m= (my,...,m), n= (n,
ooy, m;, n) €A,i=1,...,d}. Our claim is that there is a correspon-
dence between each eigenvalue and each point (27m, n) for (m, n) € B. Let
Opn = | 2m >+ V(n/2) for m, n) € B and {1} ven the rearrangement of
{6} mmep in the nondecreasing order. We show that

(2) lim—* =

under some conditions on V. The formula (2) gives a relation between the
asympototic behavior of eigenvalues and the symbol of the Schrodinger oper-
ator, which is a new result.

The class of the potentials V studied in this paper contains slowly in-
creasing ones, for example, V(x) = log - - log| x| (large | z|). The formula
(1) is proved in [7] for radial, slowly increasing potentials. But it is not
known whether the formula (1) holds or not for non-radial slowly increasing
potentials. Our theorem gives a new approach to the study of eigenvalues of
Schrodinger operators with slowly increasing potentials.

2. Theorem. We consider potentials V(x) satisfying the following con-
ditions.

(H1) VEC R, V=21, V(z) > o (x| — ).
(H2) There are positive constants ¢, 7 such that
Vie+y <cd+1|yD)'V@ (z,y €RY.
(H3) There is a constant 7, 1/2 < 7 <1, such that, for every = (a,. ..
a) €2, 1< |al=a,+ -+ + a,,
|8°V(®) | < C, V@ (x € RY
where C, is a positive constant depending only on .



