20. Some Estimates for Eigenvalues of Schrödinger Operators

By Kazuya TACHIZAWA
Mathematical Institute, Tohoku University
(Communicated by Kiyosi ITô, M. J. A., April 12, 1994)

1. Introduction. In this paper we give estimates for large eigenvalues of Schrödinger operators $-\Delta+V$ with increasing potential V. Let $N(\lambda)$ be the number of eigenvalues of the Schrödinger operator less than λ. Under some conditions on V we can prove the asymptotic formula
(1) $N(\lambda) \sim(2 \pi)^{-d}\left|\left\{(\xi, x) \in \mathbf{R}^{d} \times \mathbf{R}^{d}:|\xi|^{2}+V(x)<\lambda\right\}\right|(\lambda \rightarrow \infty)$, which means that there is a correspondence between each eigenvalue less than λ and each set with volume $(2 \pi)^{d}$ in $\left\{(\xi, x) \in \mathbf{R}^{d} \times \mathbf{R}^{d}:|\xi|^{2}+\right.$ $V(x)<\lambda\}$. This correspondence is known as the Bohr-Sommerfeld quantization rule. A lot of people study the conditions on potentials for the formula (1), for instance, Feigin [3], Fleckinger [4], Rozenbljum [5], Simon [6], Tachizawa [7], Titchmarsh [8] and so on.

In this paper we give another formulation of this problem. Let $A=(\mathbf{N}$ $\times \mathbf{Z}) \cup\left\{\left(0,2 n^{\prime}\right): n^{\prime} \in \mathbf{Z}\right\}$ and $B=\left\{(m, n): m=\left(m_{1}, \ldots, m_{d}\right), n=\left(n_{1}\right.\right.$, $\left.\left.\ldots, n_{d}\right),\left(m_{i}, n_{i}\right) \in A, i=1, \ldots, d\right\}$. Our claim is that there is a correspondence between each eigenvalue and each point $(2 \pi m, n)$ for $(m, n) \in B$. Let $\theta_{m, n}=|2 \pi m|^{2}+V(n / 2)$ for $(m, n) \in B$ and $\left\{\mu_{k}\right\}_{k \in \mathbf{N}}$ the rearrangement of $\left\{\theta_{m, n}\right\}_{(m, n) \in B}$ in the nondecreasing order. We show that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\lambda_{k}}{\mu_{k}}=1 \tag{2}
\end{equation*}
$$

under some conditions on V. The formula (2) gives a relation between the asympototic behavior of eigenvalues and the symbol of the Schrödinger operator, which is a new result.

The class of the potentials V studied in this paper contains slowly increasing ones, for example, $V(x)=\log \cdots \log |x|$ (large $|x|)$. The formula (1) is proved in [7] for radial, slowly increasing potentials. But it is not known whether the formula (1) holds or not for non-radial slowly increasing potentials. Our theorem gives a new approach to the study of eigenvalues of Schrödinger operators with slowly increasing potentials.
2. Theorem. We consider potentials $V(x)$ satisfying the following conditions.
(H1) $\quad V \in C^{\infty}\left(\mathbf{R}^{d}\right), V \geq 1, V(x) \rightarrow \infty(|x| \rightarrow \infty)$.
(H2) There are positive constants c, γ such that

$$
V(x+y) \leq c(1+|y|)^{r} V(x) \quad\left(x, y \in \mathbf{R}^{d}\right)
$$

(H3) There is a constant $\tau, 1 / 2 \leq \tau<1$, such that, for every $\alpha=\left(\alpha_{1}, \ldots\right.$, $\left.\alpha_{d}\right) \in \mathbf{Z}_{+}^{d}, 1 \leq|\alpha|=\alpha_{1}+\cdots+\alpha_{d}$,

$$
\left|\partial_{x}^{\alpha} V(x)\right| \leq C_{\alpha} V(x)^{\tau}\left(x \in \mathbf{R}^{d}\right)
$$

where C_{α} is a positive constant depending only on α.

