14. Determination of All Quaternion Octic CM-fields with Ideal Class Groups of Exponents 2

 Abridged Version

 Abridged Version}

By Stéphane Louboutin*) and Ryotaro OKAZaki**)

(Communicated by Shokichi IyAnAGA, M. J. A., Feb. 14, 1994)

In [9] the authors set to determine the non-abelian normal CM-fields with class number one. Since they have even relative class numbers, they got rid of quaternion octic CM-fields. Here, a quaternion octic field is a normal number fields of degree 8 whose Galois group is the quaternion group $\mathbf{G}=$ $\{ \pm 1, \pm i, \pm j, \pm k\}$ with $i j=k, j k=i, k i=j$ and $i^{2}=j^{2}=k^{2}=-1$. Then, in [8] the first author determined the only quaternion octic CM-fields with class number 2 . Here, we delineate the proof of the following result proved in [10] that generalizes this previous result:

Theorem. There are exactly 2 quaternion octic CM-fields with ideals class groups of exponents 2. Namely, the following two pure quaternion number fields:

$$
Q(\sqrt{-(2+\sqrt{2})(3+\sqrt{6})})
$$

with discriminant $2^{24} 3^{6}$ and class number 2 , and

$$
Q(\sqrt{-(5+\sqrt{5})(5+\sqrt{21})(21+\sqrt{105})})
$$

with discriminant $3^{6} 5^{6} 7^{6}$ and class number 8.

1. Analytic lower bounds for relative class numbers and maximal real subfields of quaternion octic CM-fields with ideal class groups of exponents 2. Here we show that under the assumption of a suitable hypothesis (H) we can set lower bounds on relative class numbers of quaternion octic CM-fields. Let us remind the reader that a number field N is called a CM-field if it is a totally imaginary number field that is a quadratic extension of a totally real subfield K. In that situation, one can prove that the class number h_{K} of K divides that h_{N} of N, and the relative class number h_{N}^{-}of \boldsymbol{N} is defined by means of $h_{N}^{-}=h_{N} / h_{K}$ (see [11, Theorem 4.10]). Note h_{N}^{-}divides h_{N}.

Proposition 1. (a). (See [5, Theorems 1 and 2(a)]) Let N be a quaternion octic CM-field such that the Dedekind zeta function of its real bicyclic biquadratic subfield K satisfies

$$
\begin{equation*}
\zeta_{K}\left(1-\frac{2}{\log \left(D_{N}\right)}\right) \leq 0 \tag{H}
\end{equation*}
$$

Then, we have the following lower bound for the relative class number h_{N}^{-}of N :

$$
\begin{equation*}
h_{N}^{-} \geq\left(1-\frac{8 \pi e^{1 / 4}}{D_{N}^{1 / 8}}\right) \frac{1}{4 e \pi^{4}} \frac{1}{\operatorname{Res}_{s=1}\left(\zeta_{K}\right)} \frac{\sqrt{D_{N} / D_{K}}}{\log \left(D_{N}\right)} \tag{1}
\end{equation*}
$$

Moreover, the hypothesis (H) is satisfied provided that we have

[^0]
[^0]: *) Département de mathématiques, U.F.R. Sciences, Université de Caen.
 **) Faculty of Science, Kyoto University.

