11. Some Families of Generalized Hypergeometric Functions Associated with the Hardy Space of Analytic Functions

By Yong Chan KIM^{*)} and H. M. SRIVASTAVA^{**)}

(Communicated by Kiyosi ITÔ, M. J. A., Feb. 14, 1994)

Abstract: Recently, several inclusion theorems associated with the Hardy space of analytic functions were proven for various families of generalized hypergeometric functions belonging to one or the other subclasses of the class \mathcal{A} of normalized analytic functions in the open unit disk \mathcal{U} . The main objective of this paper is to develop a remarkably simple proof of a unification (and generalization) of many of these inclusion theorems. Some relevant historical remarks and observations are also presented.

1. Introduction and definitions. Let \mathcal{A} denote the class of functions f(z) normalized by

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are *analytic* in the *open* unit disk \mathcal{U} . Also let \mathscr{S} denote the class of all functions in \mathscr{A} which are *univalent* in \mathcal{U} . We denote by \mathscr{S}^* and \mathscr{H} the subclasses of \mathscr{S} consisting of all functions in \mathscr{A} which are, respectively, *starlike* and *convex* in \mathcal{U} . Then it follows readily that $f(z) \in \mathscr{H} \Leftrightarrow zf'(z) \in \mathscr{S}$, which indeed is the familiar Alexander theorem (cf., e.g., Duren [3, p.43, Theorem 2.12]). We note also that $\mathscr{H} \subset \mathscr{S}^* \subset \mathscr{S}$.

Let $\mathscr{H}^{p}(0 denote the Hardy space of analytic functions <math>f(z)$ in \mathscr{U} , and define the integral means $M_{p}(r, f)$ by

(1.2)
$$M_{p}(r, f) = \begin{cases} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta\right)^{1/p} & (0$$

Definition 1. A function f(z), analytic in \mathcal{U} , is said to belong to the Hardy space $\mathcal{H}^{p}(0 if$

(1.3) $\lim_{r \to 1^{-}} \{M_p(r, f)\} < \infty \quad (0 < p \le \infty).$

For $1 \le p \le \infty$, \mathcal{H}^p is a Banach space with the norm $||f||_p$ defined by (cf., e.g., Duren [2, p. 23]; see also Koosis [11])

(1.4)
$$||f||_p = \lim_{r \to 1^-} \{M_p(r, f)\} \quad (1 \le p \le \infty).$$

Furthermore, \mathscr{H}^{∞} is the familiar class of *bounded* analytic functions in \mathscr{U} ,

^{*)} Department of Mathematics, College of Education, Yeungnam University, Korea.

^{*)} Department of Mathematics and Statistics, University of Victoria, Canada.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30C45, 30H05; Secondary 33C20.