74. On Jacobi-Perron Algorithm

By Hiroko TACHII
Department of Mathematics, Tsuda College
(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1994)

§1. Introduction. Let $X=(0,1)^{2} \ni(\alpha, \beta)$ and assume that $1, \alpha, \beta$ are linearly independent over \boldsymbol{Q}. Put

$$
a(\alpha, \beta):=\left[\frac{1}{\alpha}\right], b(\alpha, \beta):=\left[\frac{\beta}{\alpha}\right]
$$

and

$$
T(\alpha, \beta):=\left(\frac{\beta}{\alpha}-b(\alpha, \beta), \frac{1}{\alpha}-a(\alpha, \beta)\right)
$$

then T is a transformation of X into itself. $(X, T, a(\alpha, \beta), b(\alpha, \beta))$ is called Jacobi-Perron algorithm. Put

$$
\begin{gathered}
\left(a_{n}, b_{n}\right):=\left(a\left(T^{n-1}(\alpha, \beta)\right), b\left(T^{n-1}(\alpha, \beta)\right)\right) n=1,2, \cdots, \\
A(a, b):=\left(\begin{array}{lll}
a & 0 & 1 \\
1 & 0 & 0 \\
b & 1 & 0
\end{array}\right)
\end{gathered}
$$

and

$$
\left(\begin{array}{ccc}
q_{n} & q_{n-2} & q_{n-1} \\
p_{n} & p_{n-2} & p_{n-1} \\
r_{n} & r_{n-2} & r_{n-1}
\end{array}\right):=A\left(a_{1}, b_{1}\right) \cdots A\left(a_{n}, b_{n}\right) n=1,2, \cdots,
$$

then it is shown that

$$
\max \left(\left|\alpha-p_{n} / q_{n}\right|,\left|\beta-r_{n} / q_{n}\right|\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

($p_{n} / q_{n}, r_{n} / q_{n}$) is called the n-th convergent of (α, β). If

$$
T^{m}(\alpha, \beta)=T^{n}(\alpha, \beta) \quad \text { for } m \neq n
$$

then (α, β) is called periodic.
Suppose now (α, β) is periodic and let

$$
T^{m}(\alpha, \beta)=T^{m+p}(\alpha, \beta) \quad p \geqq 1
$$

Put

$$
M=A\left(a_{m+1}, b_{m+1}\right) \cdots A\left(a_{m+p}, b_{m+p}\right)
$$

M is a 3×3 integral matrix. Perron [1] proved the following result.
The following condrtions (1), (2) are equivalent.
(1) M has the eigenvalues $\lambda, \lambda_{1}, \lambda_{2}$ such that

$$
\left\{\begin{array}{l}
\lambda \in \boldsymbol{R} \quad \lambda>1 \\
\lambda_{1}, \lambda_{2}: \text { imaginary } \quad\left|\lambda_{1}\right|=\left|\lambda_{2}\right|<1
\end{array}\right.
$$

and the column vector ${ }^{t}(1, \alpha, \beta)$ is the eigenvector for λ.
(2) The order of approximations of (α, β) by the convergents $\left(p_{n} / q_{n}, r_{n}\right.$) q_{n}) is of exponent $1 / 2$, i.e. for some $K>0$

$$
\sqrt{q_{n}}\left|q_{n} \alpha-p_{n}\right|<K, \quad \sqrt{q_{n}}\left|q_{n} \beta-r_{n}\right|<K \quad \text { for all } n \in \boldsymbol{N}
$$

It is not difficult to see that if (α, β) is periodic and the condition (1) is satisfied, then for some K

