73. On the Rational Approximations to $\tanh \frac{1}{k}$. II

By Takeshi OKANO

Department of Mathematics, Saitama Institute of Technology (Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1994)

§1. Introduction. Throughout this note, we assume that k, p and q are integers with $k \ge 1$ and $q \ge 2$, and assume that p_n/q_n is the n-th convergent of $\tanh \frac{1}{k}$. In the previous paper [4], we proved the following theorem.

Theorem A. For any $\varepsilon > 0$, there is an infinity of solutions of the inequality

$$|\tanh\frac{1}{k} - \frac{p}{q}| < \left(\frac{1}{2k} + \varepsilon\right) \frac{\log\log q}{q^2 \log q}$$

in integers p and q. Further, there exists a number $q'=q'(k,\varepsilon)$ such that

$$|\tanh \frac{1}{k} - \frac{p}{q}| > \left(\frac{1}{2k} - \varepsilon\right) \frac{\log \log q}{q^2 \log q}$$

for all integers p and q with $q \geq q$.

The second statement of the theorem shows that the constant $\frac{1}{2k}$ in the inequality (1) is 'best possible' in the sense that it can not be replaced by any smaller number. Nonetheless, the inequality (1) may be improved, in that $\frac{1}{2k} + \varepsilon$ may be replaced by $\frac{1}{2k}$, and it is the purpose of this note to establish this result, thus giving the

Theorem. There is an infinity of solutions of the inequality

$$|\tanh\frac{1}{k} - \frac{p}{q}| < \frac{1}{2k} \frac{\log\log q}{q^2 \log q}$$

in integers p and q.

§2. The proof of Theorem. The continued fraction of tanh $\frac{1}{k}$ is

$$\tanh \frac{1}{k} = [a_0, a_1, a_2, a_3, \cdots] = [0, k, 3k, 5k, \cdots].$$

In other words, $a_0=0$ and $a_n=k(2n-1)$ for $n\geq 1$. Since $q_{n+1}=a_{n+1}q_n+q_{n-1}>k(2n+1)q_n$, we have

$$|\tanh \frac{1}{k} - \frac{p_n}{q_n}| < \frac{1}{q_n q_{n+1}} < \frac{1}{k(2n+1)q_n^2}$$

Now

$$\log q_n = n \log n + O(n) = n \log n \{1 + O(1/(\log n))\},\,$$

so

$$\log \log q_n = \log n + \log \log n + O(1/(\log n))$$
$$= \frac{\log q_n}{n} + \log \log n + O(1),$$