73. On the Rational Approximations to $\tanh \frac{1}{k}$. II

By Takeshi Okano
Department of Mathematics, Saitama Institute of Technology (Communicated by Shokichi Iyanaga, M. J. A., Dec. 12, 1994)

§1. Introduction. Throughout this note, we assume that k, p and q are integers with $k \geq 1$ and $q \geq 2$, and assume that p_{n} / q_{n} is the n-th convergent of $\tanh \frac{1}{k}$. In the previous paper [4], we proved the following theorem.

Theorem A. For any $\varepsilon>0$, there is an infinity of solutions of the inequality

$$
\begin{equation*}
\left|\tanh \frac{1}{k}-\frac{p}{q}\right|<\left(\frac{1}{2 k}+\varepsilon\right) \frac{\log \log q}{q^{2} \log q} \tag{1}
\end{equation*}
$$

in integers p and q. Further, there exists a number $q^{\prime}=q^{\prime}(k, \varepsilon)$ such that

$$
\left|\tanh \frac{1}{k}-\frac{p}{q}\right|>\left(\frac{1}{2 k}-\varepsilon\right) \frac{\log \log q}{q^{2} \log q}
$$

for all integers p and q with $q \geq q^{\prime}$.
The second statement of the theorem shows that the constant $\frac{1}{2 k}$ in the inequality (1) is 'best possible' in the sense that it can not be replaced by any smaller number. Nonetheless, the inequality (1) may be improved, in that $\frac{1}{2 k}+\varepsilon$ may be replaced by $\frac{1}{2 k}$, and it is the purpose of this note to establish this result, thus giving the

Theorem. There is an infinity of solutions of the inequality

$$
\left|\tanh \frac{1}{k}-\frac{p}{q}\right|<\frac{1}{2 k} \frac{\log \log q}{q^{2} \log q}
$$

in integers p and q.
§2. The proof of Theorem. The continued fraction of $\tanh \frac{1}{k}$ is

$$
\tanh \frac{1}{k}=\left[a_{0}, a_{1}, a_{2}, a_{3}, \cdots\right]=[0, k, 3 k, 5 k, \cdots]
$$

In other words, $a_{0}=0$ and $a_{n}=k(2 n-1)$ for $n \geq 1$. Since $q_{n+1}=a_{n+1} q_{n}$ $+q_{n-1}>k(2 n+1) q_{n}^{\prime}$, we have

$$
\left|\tanh \frac{1}{k}-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n} q_{n+1}}<\frac{1}{k(2 n+1) q_{n}^{2}}
$$

Now

$$
\log q_{n}=n \log n+O(n)=n \log n\{1+O(1 /(\log n))\}
$$

so

$$
\begin{aligned}
\log \log q_{n} & =\log n+\log \log n+O(1 /(\log n)) \\
& =\frac{\log q_{n}}{n}+\log \log n+O(1)
\end{aligned}
$$

