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51. Triangles and Elliptic Curves. II

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U. S. A.
(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1994)

This is a continuation of my preceding paper [1] which will be referred
to as (I) in this paper. In (I), to each parameter t (a, b, c), we associated a
pair (Et, 7rt) of an elliptic plane curve and a point on it. In this paper, we
shall find an elliptic space curve C in a fibre of the map t E so that the
map t - 7r is an isogeny" C---* E Et, t C. As in (I), this paper will con-
tain an assertion on the Mordell-Weil group E(k) when k is a number field.

1. Space T. Let k be a field of characteristic :/: 2 and k be the
algebraic closure of k. Let l(t), m re(t), n n(t) be independent

klinear forms on the vector sPace Our parameter space is defined by
(1.1) T- {t,/3; (1

._
m)(m2_ n2)(n2_ l ) 4= 0}.

For each t T, put
P,= (1- n) + (m n),
Qt (1 n2) (m- n2)

(.2)
(.3)
Then we have
(.4) P-4Q,= (12- m2).
By the definition of T, we obtain elliptic curves

3(1.5) Et" y x + Px + Qtx
x(x (n l) (x (n m) t T.

One verifies easily that
(1.6) rc= (n lmn) E, t T

If forms l, m, n have coefficients in k and if t T(k) T (3 k, then
the elliptic curve Et is defined over k and rrt Et(k) Et fl k.
(1.7) Example. If we put l(t) (b + a)/2, re(t) (b- a)/2, n(t) c/2,
for t (a, b, c) T, then we find ourselves in the situation of (I): Pt
(a2-F b c)/2, Q (a q- b + c) (a -F b-- c) (a-- b q- c) (a b c)/16

)and zrt (c/4, c(b2- a /8).
(1.8) Example. In 2 we shall meet the simplest ,situation where l(t) a,
re(t) b, n(t) c. In this case, we have P a -+- b2- 2c Qt (a-c) (b2- c) and zr-- (c abc)

Back to general 1, m, n, we shall consider the equivalence relation in T
defined by
(1.9) tN t’<=*E= Ev, t, t’ T.
In other words,
(1.10) t t’<=>Pt=Pv, Q= Qv, t, t’ T.
Now call to a point in T fixed once for all and consider the class F contain-
ing to:
(1.11) F= {t T t to}.


