51. Triangles and Elliptic Curves. II

By Takashi ONO

Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1994)

This is a continuation of my preceding paper [1] which will be referred to as (I) in this paper. In (I), to each parameter t = (a, b, c), we associated a pair (E_t, π_t) of an elliptic plane curve and a point on it. In this paper, we shall find an elliptic space curve C in a fibre of the map $t \mapsto E_t$ so that the map $t \mapsto \pi_t$ is an isogeny: $C \to E = E_t$, $t \in C$. As in (I), this paper will contain an assertion on the Mordell-Weil group E(k) when k is a number field.

§1. Space T. Let k be a field of characteristic $\neq 2$ and \bar{k} be the algebraic closure of k. Let l = l(t), m = m(t), n = n(t) be independent linear forms on the vector space \bar{k}^3 . Our parameter space is defined by (1.1) $T = \{t \in \bar{k}^3; (l^2 - m^2) (m^2 - n^2) (n^2 - l^2) \neq 0\}$. For each $t \in T$, put (1.2) $P_t = (l^2 - n^2) + (m^2 - n^2)$, $Q_t = (l^2 - n^2) (m^2 - n^2)$. Then we have (1.4) $P_t^2 - 4Q_t = (l^2 - m^2)^2$. By the definition of T, we obtain elliptic curves (1.5) $E_t : y^2 = x^3 + P_t x^2 + Q_t x = x(x - (n^2 - l^2))(x - (n^2 - m^2))$, $t \in T$.

One verifies easily that

(1.6) $\pi_t = (n^2, lmn) \in E_t, \quad t \in T.$

If forms l, m, n have coefficients in k and if $t \in T(k) = T \cap k^3$, then the elliptic curve E_t is defined over k and $\pi_t \in E_t(k) = E_t \cap k^2$. (1.7) **Example.** If we put l(t) = (b + a)/2, m(t) = (b - a)/2, n(t) = c/2, for $t = (a, b, c) \in T$, then we find ourselves in the situation of (I): $P_t =$

for $t = (a, b, c) \in I$, then we find ourselves in the situation of (i): $P_t = (a^2 + b^2 - c^2)/2$, $Q_t = (a + b + c)(a + b - c)(a - b + c)(a - b - c)/16$ and $\pi_t = (c^2/4, c(b^2 - a^2)/8)$.

(1.8) **Example.** In §2 we shall meet the simplest situation where l(t) = a, m(t) = b, n(t) = c. In this case, we have $P_t = a^2 + b^2 - 2c^2$, $Q_t = (a^2 - c^2)(b^2 - c^2)$ and $\pi_t = (c^2, abc)$.

Back to general l, m, n, we shall consider the equivalence relation in T defined by

(1.9)
$$t \sim t' \Leftrightarrow E_t = E_{t'}, \quad t, t' \in T.$$

In other words,

(1.10) $t \sim t' \Leftrightarrow P_t = P_{t'}, \quad Q_t = Q_{t'}, \quad t, t' \in T.$

Now call t_0 a point in T fixed once for all and consider the class F containing t_0 :

(1.11)
$$F = \{t \in T ; t \sim t_0\}.$$