51. Triangles and Elliptic Curves. II

By Takashi ONO
Department of Mathematics, The Johns Hopkins University, U. S. A.
(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1994)

This is a continuation of my preceding paper [1] which will be referred to as (I) in this paper. In (I), to each parameter $t=(a, b, c)$, we associated a pair $\left(E_{t}, \pi_{t}\right)$ of an elliptic plane curve and a point on it. In this paper, we shall find an elliptic space curve C in a fibre of the map $t \mapsto E_{t}$ so that the map $t \mapsto \pi_{t}$ is an isogeny: $C \rightarrow E=E_{t}, t \in C$. As in (I), this paper will contain an assertion on the Mordell-Weil group $E(k)$ when k is a number field.
§1. Space T. Let k be a field of characteristic $\neq 2$ and \bar{k} be the algebraic closure of k. Let $l=l(t), m=m(t), n=n(t)$ be independent linear forms on the vector space \vec{k}^{3}. Our parameter space is defined by

$$
\begin{equation*}
T=\left\{t \in \bar{k}^{3} ;\left(l^{2}-m^{2}\right)\left(m^{2}-n^{2}\right)\left(n^{2}-l^{2}\right) \neq 0\right\} \tag{1.1}
\end{equation*}
$$

For each $t \in T$, put

$$
\begin{gather*}
P_{t}=\left(l^{2}-n^{2}\right)+\left(m^{2}-n^{2}\right), \tag{1.2}\\
Q_{t}=\left(l^{2}-n^{2}\right)\left(m^{2}-n^{2}\right) . \tag{1.3}
\end{gather*}
$$

Then we have

$$
\begin{equation*}
P_{t}^{2}-4 Q_{t}=\left(l^{2}-m^{2}\right)^{2} . \tag{1.4}
\end{equation*}
$$

By the definition of T, we obtain elliptic curves

$$
\begin{align*}
E_{t}: y^{2} & =x^{3}+P_{t} x^{2}+Q_{t} x \tag{1.5}\\
& =x\left(x-\left(n^{2}-l^{2}\right)\right)\left(x-\left(n^{2}-m^{2}\right)\right), \quad t \in T .
\end{align*}
$$

One verifies easily that

$$
\begin{equation*}
\pi_{t}=\left(n^{2}, \operatorname{lm} n\right) \in E_{t}, \quad t \in T . \tag{1.6}
\end{equation*}
$$

If forms l, m, n have coefficients in k and if $t \in T(k)=T \cap k^{3}$, then the elliptic curve E_{t} is defined over k and $\pi_{t} \in E_{t}(k)=E_{t} \cap k^{2}$.
(1.7) Example. If we put $l(t)=(b+a) / 2, m(t)=(b-a) / 2, n(t)=c / 2$, for $t=(a, b, c) \in T$, then we find ourselves in the situation of (I): $P_{t}=$ $\left(a^{2}+b^{2}-c^{2}\right) / 2, \quad Q_{t}=(a+b+c)(a+b-c)(a-b+c)(a-b-c) / 16$ and $\pi_{t}=\left(c^{2} / 4, c\left(b^{2}-a^{2}\right) / 8\right)$.
(1.8) Example. In §2 we shall meet the simplest situation where $l(t)=a$, $m(t)=b, n(t)=c$. In this case, we have $P_{t}=a^{2}+b^{2}-2 c^{2}, Q_{t}=\left(a^{2}-\right.$ $\left.c^{2}\right)\left(b^{2}-c^{2}\right)$ and $\pi_{t}=\left(c^{2}, a b c\right)$.

Back to general l, m, n, we shall consider the equivalence relation in T defined by

$$
\text { (1.9) } \quad t \sim t^{\prime} \Leftrightarrow E_{t}=E_{t^{\prime}}, \quad t, t^{\prime} \in T
$$

In other words,

$$
\begin{equation*}
t \sim t^{\prime} \Leftrightarrow P_{t}=P_{t^{\prime}}, \quad Q_{t}=Q_{t^{\prime}}, \quad t, t^{\prime} \in T . \tag{1.10}
\end{equation*}
$$

Now call t_{0} a point in T fixed once for all and consider the class F containing t_{0} :

$$
\begin{equation*}
F=\left\{t \in T ; t \sim t_{0}\right\} \tag{1.11}
\end{equation*}
$$

