25. Triangles and Elliptic Curves*

By Takashi ONO
Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IYANAGA, M. J. A., April 12, 1994)

In this paper, we shall obtain a family of infinitely many elliptic curves defined over an algebraic number field k so that every curve in it has positive Mordell-Weil rank with respect to k. The construction of curves is very easy: we have only to replace right triangles in the antique congruent number problem by arbitrary triangles.
§1. Arbitrary field. Let k be a field of characteristic $\neq 2$ and let \bar{k} be an algebraic closure of k, fixed once for all. For three elements a, b, c in \bar{k}, we shall put

$$
\begin{align*}
P & =\frac{1}{2}\left(a^{2}+b^{2}-c^{2}\right) \tag{1.1}\\
Q & =\frac{1}{16}(a+b+c)(a+b-c)(a-b+c)(a-b-c) \tag{1.2}\\
& =\frac{1}{16}\left(a^{4}+b^{4}+c^{4}-2 a^{2} b^{2}-2 b^{2} c^{2}-2 c^{2} a^{2}\right)
\end{align*}
$$

One verifies easily that

$$
\begin{equation*}
P^{2}-4 Q=a^{2} b^{2} . \tag{1.3}
\end{equation*}
$$

Now consider the plane cubic:

$$
\begin{equation*}
y^{2}=x^{3}+P x^{2}+Q x=x\left(x+\frac{P+a b}{2}\right)\left(x+\frac{P-a b}{2}\right) \tag{1.4}
\end{equation*}
$$

From (1.3), (1.4), one finds that the cubic is non-singular if and only if (1.5)

$$
a b Q \neq 0 .
$$

We shall call E the elliptic curve given by (1.4) with the condition (1.5). Referring to standard definitions on Weierstrass equations ([1] p. 46), we find the values of the discriminant and the j-invariant of E in terms of a, b, c, P, Q :
(1.6) $\Delta=(4 a b Q)^{2}=16 D, D$ being the discriminant of $x^{3}+P x^{2}+Q x$, (1.7) $j=2^{8}\left(P^{2}-3 Q\right)^{3} /(a b Q)^{2}=2^{8}\left(Q+a^{2} b^{2}\right)^{3} /(a b Q)^{2}$.
(1.8) Remark. Although not neccesary in this paper, we mention here a basic fact. A simple calculation shows that if (a, b, c) and ($a^{\prime}, b^{\prime}, c^{\prime}$) are triples in \bar{k} with (1.5) such that $a^{\prime}=r a, b^{\prime}=r b, c^{\prime}=r c$ with $r \in \bar{k}^{\times}$, then they have the same j-invariant. Consequently, our construction (a, b, c) $\mapsto E$ induces a map:
(1.9) $\quad P^{2}(\bar{k})-H \rightarrow \bar{k}$ (moduli space of elliptic curves over \bar{k}),
where H is the union of six lines $a=0, b=0, a+b+c=0, a+b-c$ $=0, a-b+c=0$ and $a-b-c=0$.
(1.10) Lemma. Let E be the elliptic curve defined by $a, b, c \in \bar{k}$ with (1.5).

[^0]
[^0]: *) Dedicated to Professor S. Iyanaga on his 88 th birthday.

